
Martin G Haehnelt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11960896/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-αforest. Physical Review D, 2005, 71, .	4.7	671
2	Warm dark matter as a solution to the small scale crisis: New constraints from high redshift Lyman- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>1±</mml:mi></mml:math> forest data. Physical Review D, 2013, 88, .	4.7	572
3	New constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>î±</mml:mi></mml:math> forest data. Physical Review D, 2017, 96, .	4.7	360
4	First Constraints on Fuzzy Dark Matter from Lyman- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>α</mml:mi> Forest Data and Hydrodynamical Simulations. Physical Review Letters, 2017, 119, 031302.</mml:math 	7.8	310
5	The observed ionization rate of the intergalactic medium and the ionizing emissivity at z >= 5: evidence for a photon-starved and extended epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2007, 382, 325-341.	4.4	306
6	Detection of extended Heâ€fii reionization in the temperature evolution of the intergalactic mediumâ~ Monthly Notices of the Royal Astronomical Society, 2011, 410, 1096-1112.	4.4	267
7	Massive neutrinos and the non-linear matter power spectrum. Monthly Notices of the Royal Astronomical Society, 2012, 420, 2551-2561.	4.4	263
8	Inferring the dark matter power spectrum from the Lymanαforest in high-resolution QSO absorption spectra. Monthly Notices of the Royal Astronomical Society, 2004, 354, 684-694.	4.4	254
9	Can Sterile Neutrinos Be Ruled Out as Warm Dark Matter Candidates?. Physical Review Letters, 2006, 97, 071301.	7.8	193
10	The correlation between black hole mass and bulge velocity dispersion in hierarchical galaxy formation models. Monthly Notices of the Royal Astronomical Society, 2000, 318, L35-L38.	4.4	183
11	The effect of neutrinos on the matter distribution as probed by the intergalactic medium. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 015-015.	5.4	179
12	The Lyman a forest opacity and the metagalactic hydrogen ionization rate at z 2-4. Monthly Notices of the Royal Astronomical Society, 2005, 357, 1178-1188.	4.4	176
13	How Cold Is Cold Dark Matter? Small-Scales Constraints from the Flux Power Spectrum of the High-Redshift Lyman- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>î±</mml:mi></mml:math> Forest. Physical Review Letters, 2008, 100, 041304.	7.8	174
14	High-redshift galaxies, their active nuclei and central black holes. Monthly Notices of the Royal Astronomical Society, 1998, 300, 817-827.	4.4	172
15	Measurements of the ultraviolet background at 4.6 < z < 6.4 using the quasar proximity effectâ~ Monthly Notices of the Royal Astronomical Society, 2011, 412, 2543-2562.	4.4	161
16	Large LyÂα opacity fluctuations and low CMB Ï,, in models of late reionization with large islands of neutral hydrogen extending to <i>z</i> < 5.5. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 485, L24-L28.	3.3	158
17	Inside-out or outside-in: the topology of reionization in the photon-starved regime suggested by Lyα forest data. Monthly Notices of the Royal Astronomical Society, 2009, 394, 960-977.	4.4	154
18	QSO Metal Absorption Systems at High Redshift and the Signature of Hierarchical Galaxy Formation. Astrophysical Journal, 1997, 481, 601-624.	4.5	153

#	Article	IF	CITATIONS
19	Cosmological and astrophysical parameters from the Sloan Digital Sky Survey flux power spectrum and hydrodynamical simulations of the Lyman α forest. Monthly Notices of the Royal Astronomical Society, 2006, 365, 231-244.	4.4	152
20	Radiative Transfer Effects during Photoheating of the Intergalactic Medium. Astrophysical Journal, 1999, 520, L13-L16.	4.5	132
21	Neutrino masses and cosmological parameters from a Euclid-like survey: Markov Chain Monte Carlo forecasts including theoretical errors. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 026-026.	5.4	119
22	The Sherwood simulation suite: overview and data comparisons with the LymanÂα forest at redshifts 2 ≤i>z≤5. Monthly Notices of the Royal Astronomical Society, 2017, 464, 897-914.	4.4	119
23	Consistent modelling of the meta-galactic UV background and the thermal/ionization history of the intergalactic medium. Monthly Notices of the Royal Astronomical Society, 2019, 485, 47-68.	4.4	116
24	Detection of dark galaxies and circum-galactic filaments fluorescently illuminated by a quasar at z = 2.4. Monthly Notices of the Royal Astronomical Society, 2012, 425, 1992-2014.	4.4	109
25	Long troughs in the Lyman-α forest below redshift 6 due to islands of neutral hydrogen. Monthly Notices of the Royal Astronomical Society, 2020, 491, 1736-1745.	4.4	101
26	Improved measurements of the intergalactic medium temperature around quasars: possible evidence for the initial stages of He ii reionization atâ€,z ≃ 6. Monthly Notices of the Royal Astronomical Society, 2012, 419, 2880-2892.	4.4	98
27	On the rapid demise of Ly α emitters at redshift z ≳ 7 due to the increasing incidence of optically thick absorption systems. Monthly Notices of the Royal Astronomical Society, 2013, 429, 1695-1704.	4.4	96
28	Interpreting ALMA observations of the ISM during the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4831-4861.	4.4	90
29	The photoheating of the intergalactic medium in synthesis models of the UV background. Monthly Notices of the Royal Astronomical Society, 2015, 450, 4081-4097.	4.4	88
30	Large-scale opacity fluctuations in the Lyα forest: evidence for QSOs dominating the ionizing UV background at <i>z</i> â^¼ 5.5–6?. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3429-3445.	4.4	82
31	Hydrogen reionization ends by <i>z</i> = 5.3: Lyman-α optical depth measured by the XQR-30 sample. Monthly Notices of the Royal Astronomical Society, 2022, 514, 55-76.	4.4	82
32	A consistent determination of the temperature of the intergalactic medium at redshift ã€^z〉 = 2.4. Monthly Notices of the Royal Astronomical Society, 2014, 438, 2499-2507.	4.4	81
33	Cosmological and astrophysical constraints from the Lyman α forest flux probability distribution function. Monthly Notices of the Royal Astronomical Society: Letters, 2009, 399, L39-L43.	3.3	78
34	Damped LyÎ \pm Absorber and the Faint End of the Galaxy Luminosity Function at High Redshift. Astrophysical Journal, 2000, 534, 594-597.	4.5	73
35	The distribution of supermassive black holes in the nuclei of nearby galaxies. Monthly Notices of the Royal Astronomical Society, 1999, 308, 77-81.	4.4	72
36	Calibrating cosmological radiative transfer simulations with LyÂα forest data: evidence for large spatial UV background fluctuations at <i>z</i> â^¼ 5.6–5.8 due to rare bright sources. Monthly Notices of the Royal Astronomical Society, 2015, 453, 2944-2965.	4.4	72

#	Article	IF	CITATIONS
37	Probing the thermal state of the intergalactic medium at <i>z</i> > 5 with the transmission spikes in high-resolution  Ly l± forest spectra. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5091-5109.	4.4	69
38	Numerical resolution effects on simulations of massive black hole seeds. Monthly Notices of the Royal Astronomical Society, 2014, 439, 1160-1175.	4.4	68
39	Feeding black holes at galactic centres by capture from isothermal cusps. New Astronomy, 2002, 7, 385-394.	1.8	67
40	A first direct measurement of the intergalactic medium temperature around a quasar at z= 6. Monthly Notices of the Royal Astronomical Society, 2010, 406, 612-625.	4.4	67
41	The clustering of galaxies around quasars. Monthly Notices of the Royal Astronomical Society, 2002, 332, 529-535.	4.4	66
42	An Ionizing Ultraviolet Background Dominated by Massive Stars. Astrophysical Journal, 2001, 549, L151-L154.	4.5	66
43	C IV Absorption from Galaxies in the Process of Formation. Astrophysical Journal, 1996, 465, L95-L98.	4.5	59
44	Constraints on the primordial power spectrum from high-resolution Lyman $\hat{I}\pm$ forest spectra and WMAP. Monthly Notices of the Royal Astronomical Society, 2004, 355, L23-L28.	4.4	58
45	Filamentary infall of cold gas and escape of Lyα and hydrogen ionizing radiation from an interacting high-redshift galaxya˜ Monthly Notices of the Royal Astronomical Society, 2011, 418, 1115-1126.	4.4	56
46	Spatial fluctuations of the intergalactic temperature–density relation after hydrogen reionization. Monthly Notices of the Royal Astronomical Society, 2018, 477, 5501-5516.	4.4	46
47	Testing the effect of galactic feedback on the IGM at <i>z</i> â^¼ 6 with metal-line absorbers. Monthly Notices of the Royal Astronomical Society, 2016, 461, 606-626.	4.4	43
48	A consistent and robust measurement of the thermal state of the IGM at 2 ≤i>z ≤f from a large sample of  Ly <i>α</i> forest spectra: evidence for late and rapid He <scp>ii</scp> reionization. Mo Notices of the Royal Astronomical Society, 2021, 506, 4389-4412.	ntabahy	42
49	The Asiago-ESO/RASS QSO Survey. III. Clustering Analysis and Theoretical Interpretation. Astronomical Journal, 2004, 127, 592-605.	4.7	39
50	A closer look at using quasar near-zones as a probe of neutral hydrogen in the intergalactic medium. Monthly Notices of the Royal Astronomical Society: Letters, 2007, 381, L35-L39.	3.3	39
51	Probing the end of reionization with the near zones of <i>z</i> ≳ 6 QSOs. Monthly Notices of the Royal Astronomical Society, 2015, 454, 681-697.	4.4	38
52	Predictions and sensitivity forecasts for reionization-era [C <scp>ii</scp>] line intensity mapping. Monthly Notices of the Royal Astronomical Society, 2019, 485, 3486-3498.	4.4	38
53	A new measurement of the intergalactic temperature at zÂâ^¼Â2.55–2.95. Monthly Notices of the Royal Astronomical Society, 2018, 474, 2871-2883.	4.4	37
54	Lyman-α emitters gone missing: the different evolution of the bright and faint populations. Monthly Notices of the Royal Astronomical Society, 2018, 479, 2564-2587.	4.4	36

#	Article	IF	CITATIONS
55	Modelling the observed luminosity function and clustering evolution of Ly α emitters: growing evidence for late reionization. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1350-1366.	4.4	35
56	Expansion and Collapse in the Cosmic Web. Astrophysical Journal, 2005, 632, 58-80.	4.5	33
57	A deep search for metals near redshift 7: the line of sight towards ULASÂJ1120+0641. Monthly Notices of the Royal Astronomical Society, 2017, 470, 1919-1934.	4.4	33
58	Pixel correlation searches for O VI in the Lyman forest and the volume filling factor of metals in the intergalactic medium at z 2-3.5. Monthly Notices of the Royal Astronomical Society, 2004, 347, 985-993.	4.4	32
59	Galactic winds and the Lyα forest. Monthly Notices of the Royal Astronomical Society, 2004, 350, 879-892.	4.4	29
60	Constraining the second half of reionization with the Ly β forest. Monthly Notices of the Royal Astronomical Society, 2020, 497, 906-915.	4.4	29
61	Testing the accuracy of the hydrodynamic particle-mesh approximation in numerical simulations of the Lyman forest. Monthly Notices of the Royal Astronomical Society, 2006, 367, 1655-1665.	4.4	28
62	Large 21-cm signals from AGN-dominated reionization. Monthly Notices of the Royal Astronomical Society, 2017, 469, 4283-4291.	4.4	27
63	Models of the cosmological 21Âcm signal from the epoch of reionization calibrated with LyÂα and CMB data. Monthly Notices of the Royal Astronomical Society, 2016, 463, 2583-2599.	4.4	24
64	Self-shielding of hydrogen in the IGM during the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2018, 478, 1065-1076.	4.4	24
65	A z = 3.045 Ly α emitting halo hosting a QSO and a possible candidate for ACN-triggered star formation. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 431, L68-L72.	3.3	21
66	Hierarchical build-up of galactic bulges and the merging rate of supermassive binary black holes. Classical and Quantum Gravity, 2003, 20, S31-S36.	4.0	19
67	Extended and filamentary Lyα emission from the formation of a protogalactic halo at z = 2.63â~â€. Monthly Notices of the Royal Astronomical Society, 2013, 429, 429-443.	4.4	19
68	Tracing the sources of reionization in cosmological radiation hydrodynamics simulations. Monthly Notices of the Royal Astronomical Society, 2019, 483, 1029-1041.	4.4	19
69	The effect of stellar and AGN feedback on the low-redshift Lyman α forest in the Sherwood simulation suite. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1056-1069.	4.4	17
70	Faint resonantly scattered Lyα emission from the absorption troughs of damped Lyα systems at <i>z</i> â^½ 3. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 412, L55-L57.	3.3	16
71	Observational aspects of galactic accretion at redshift 3.3. Monthly Notices of the Royal Astronomical Society, 2016, 455, 3991-3999.	4.4	15
72	Revised estimates of CMB <i>B</i> -mode polarization induced by patchy reionization. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 003-003.	5.4	15

#	Article	IF	CITATIONS
73	The effect of inhomogeneous reionization on the LymanÂα forest power spectrum at redshift z > 4: implications for thermal parameter recovery. Monthly Notices of the Royal Astronomical Society, 2021, 509, 6119-6137.	4.4	14
74	Limits on non-canonical heating and turbulence in the intergalactic medium from the low redshift Lyman α forest. Monthly Notices of the Royal Astronomical Society, 2022, 513, 864-885.	4.4	9
75	Prospects for observing the low-density cosmic web in Lyman- <i>\hat{l}±</i> emission. Astronomy and Astrophysics, 2021, 650, A98.	5.1	8
76	Implications of the <i>z</i> > 5 Lyman-α forest for the 21-cm power spectrum from the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4684-4696.	4.4	6
77	Star-forming galactic contrails as a source of metal enrichment and ionizing radiation at high redshifta~ Monthly Notices of the Royal Astronomical Society, 2014, 441, 73-85.	4.4	4
78	Constraints on the meta-galactic hydrogen ionisation rate from the Lyman-\$alpha\$ forest opacity. Proceedings of the International Astronomical Union, 2005, 1, 219-224.	0.0	1
79	The connection between the formation of galaxies and that of their central supermassive black holes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2005, 363, 705-713.	3.4	0
80	Growing Supermassive Black Holes in Cosmological Simulations of Structure Formation. Proceedings of the International Astronomical Union, 2009, 5, 445-450.	0.0	0
81	<i>z</i> ~ 6 metal-line absorbers as a probe of galactic feedback models. Proceedings of the International Astronomical Union, 2016, 11, 75-77.	0.0	0
82	Evolution of the Quasar Luminosity Function: Implications for EoR-21cm. Proceedings of the International Astronomical Union, 2017, 12, 246-249.	0.0	0