Yu-Sheng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11960483/publications.pdf

Version: 2024-02-01

137	7,164	46 h-index	78
papers	citations		g-index
143	143	143	8953 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Taming the Chlorine Radical: Enforcing Steric Control over Chlorine-Radical-Mediated C–H Activation. Journal of the American Chemical Society, 2022, 144, 1464-1472.	6.6	62
2	Fluorinated Azaacenes: Efficient Syntheses, Structures, and Electrochemical Properties. Journal of Fluorine Chemistry, 2022, 257-258, 109960.	0.9	O
3	A robust soc-MOF platform exhibiting high gravimetric uptake and volumetric deliverable capacity for on-board methane storage. Nano Research, 2021, 14, 512-517.	5.8	40
4	Capturing the Complete Reaction Profile of a C–H Bond Activation. Journal of the American Chemical Society, 2021, 143, 6060-6064.	6.6	21
5	Assigning Optical Absorption Transitions with Light-Induced Crystal Structures: Case Study of a Single-Crystal Nanooptomechanical Transducer. Journal of Physical Chemistry C, 2021, 125, 15711-15723.	1.5	4
6	Photohalogen elimination chemistry in low-valent binuclear nickel complexes. Polyhedron, 2021, 203, 115228.	1.0	1
7	Functional Porphyrinic Metal–Organic Framework as a New Class of Heterogeneous Halogenâ€Bondâ€Donor Catalyst. Angewandte Chemie - International Edition, 2021, 60, 24312-24317.	7.2	20
8	Functional Porphyrinic Metalâ€Organic Framework as a New Class of Heterogeneous Halogen Bond Donor Catalyst. Angewandte Chemie, 2021, 133, 24514.	1.6	2
9	Single-Crystal Optical Actuation Generated by 100% SO2 Linkage Photoisomerization in a Ruthenium-Based Coordination Complex. Journal of Physical Chemistry C, 2021, 125, 20059-20066.	1.5	2
10	Rapid build up of nanooptomechanical transduction in single crystals of a ruthenium-based SO ₂ linkage photoisomer. Chemical Communications, 2021, 57, 1320-1323.	2.2	8
11	In situ visualization of loading-dependent water effects in a stable metal–organic framework. Nature Chemistry, 2020, 12, 186-192.	6.6	53
12	Intertwined density waves in a metallic nickelate. Nature Communications, 2020, 11, 6003.	5.8	24
13	<i>In Crystallo</i> Snapshots of Rh ₂ -Catalyzed Câ€"H Amination. Journal of the American Chemical Society, 2020, 142, 19862-19867.	6.6	31
14	Systems Approach of Photoisomerization Metrology for Single-Crystal Optical Actuators: A Case Study of [Ru(SO ₂)(NH ₃) ₄ Cl]Cl. Journal of Physical Chemistry C, 2020, 124, 28230-28243.	1.5	7
15	Determination of the dehydration pathway in a flexible metal–organic framework by dynamic ⟨i⟩in situ⟨ i⟩ x-ray diffraction. Structural Dynamics, 2020, 7, 034305.	0.9	4
16	Chemical Bonding in Colossal Thermopower FeSb ₂ . Chemistry - A European Journal, 2020, 26, 8651-8662.	1.7	6
17	Materializing rival ground states in the barlowite family of kagome magnets: quantum spin liquid, spin ordered, and valence bond crystal states. Npj Quantum Materials, 2020, 5, . High oxygen pressure floating zone growth and crystal structure of the metallic nickelates	1.8	37
18	<pre><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>R</mml:mi><mml:m< pre=""></mml:m<></mml:msub></mml:mrow></mml:math></pre>	nn>4 <td>l:mn></td>	l:mn>

#	Article	IF	Citations
19	Site-specific structure at multiple length scales in kagome quantum spin liquid candidates. Physical Review Materials, 2020, 4, .	0.9	13
20	Materializing rival ground states in the barlowite family of kagome magnets: quantum spin liquid, spin ordered, and valence bond crystal states. Npj Quantum Materials, 2020, 5, .	1.8	4
21	Robust Corrole-Based Metal–Organic Frameworks with Rare 9-Connected Zr/Hf-Oxo Clusters. Journal of the American Chemical Society, 2019, 141, 14443-14450.	6.6	83
22	Chemical mimicry of viral capsid self-assembly via corannulene-based pentatopic tectons. Nature Communications, 2019, 10, 3443.	5 . 8	38
23	PAH/PAH(CF 3) n Donor/Acceptor Chargeâ€Transfer Complexes in Solution and in Solidâ€State Coâ€Crystals. Chemistry - A European Journal, 2019, 25, 13547-13565.	1.7	7
24	One-Pot Self-Assembly of Stellated Metallosupramolecules from Multivalent and Complementary Terpyridine-Based Ligands. Journal of the American Chemical Society, 2019, 141, 16217-16221.	6.6	31
25	Characterization of a Reactive Rh ₂ Nitrenoid by Crystalline Matrix Isolation. Journal of the American Chemical Society, 2019, 141, 16232-16236.	6.6	46
26	Spin Stripe Order in a Square Planar Trilayer Nickelate. Physical Review Letters, 2019, 122, 247201.	2.9	48
27	Ligandâ€Based Control of Singleâ€Site vs. Multiâ€Site Reactivity by a Trichromium Cluster. Angewandte Chemie, 2019, 131, 5743-5747.	1.6	0
28	Ligandâ€Based Control of Singleâ€Site vs. Multiâ€Site Reactivity by a Trichromium Cluster. Angewandte Chemie - International Edition, 2019, 58, 5687-5691.	7.2	14
29	Î- ² -SO ₂ Linkage Photoisomer of an Osmium Coordination Complex. Inorganic Chemistry, 2018, 57, 2673-2677.	1.9	21
30	Linear MgCp* ₂ vs Bent CaCp* ₂ : London Dispersion, Ligand-Induced Charge Localizations, and Pseudo-Pregostic Câ€"H··Ca Interactions. Inorganic Chemistry, 2018, 57, 4906-4920.	1.9	17
31	Understanding Polyarene Trifluoromethylation with Hot CF 3 Radicals Using Corannulene. European Journal of Organic Chemistry, 2018, 2018, 4233-4245.	1.2	8
32	Dissecting Porosity in Molecular Crystals: Influence of Geometry, Hydrogen Bonding, and [π···π] Stacking on the Solid-State Packing of Fluorinated Aromatics. Journal of the American Chemical Society, 2018, 140, 6014-6026.	6.6	106
33	Multicomponent Selfâ€Assembly of Metalloâ€Supramolecular Macrocycles and Cages through Dynamic Heteroleptic Terpyridine Complexation. Chemistry - A European Journal, 2018, 24, 9274-9284.	1.7	35
34	Synthesis and Characterization of Ferrocene Based Hemicages. Journal of Organic Chemistry, 2018, 83, 4824-4830.	1.7	7
35	A metal–metalloporphyrin framework based on an octatopic porphyrin ligand for chemical fixation of CO ₂ with aziridines. Chemical Communications, 2018, 54, 1170-1173.	2.2	104
36	Self-Assembly and Catalytic Reactivity of BINOL-Bridged Bis(phenanthroline) Metallocages. Inorganic Chemistry, 2018, 57, 3559-3567.	1.9	19

#	Article	IF	Citations
37	Rationally designed divalent caffeic amides inhibit amyloid- \hat{l}^2 fibrillization, induce fibril dissociation, and ameliorate cytotoxicity. European Journal of Medicinal Chemistry, 2018, 158, 393-404.	2.6	11
38	Topology-Guided Stepwise Insertion of Three Secondary Linkers in Zirconium Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 7710-7715.	6.6	81
39	Frontispiece: Multicomponent Self-Assembly of Metallo-Supramolecular Macrocycles and Cages through Dynamic Heteroleptic Terpyridine Complexation. Chemistry - A European Journal, 2018, 24, .	1.7	0
40	From the source: student-centred guest lecturing in a chemical crystallography class. Journal of Applied Crystallography, 2018, 51, 909-914.	1.9	9
41	From Coordination Cages to a Stable Crystalline Porous Hydrogenâ€Bonded Framework. Chemistry - A European Journal, 2017, 23, 4774-4777.	1.7	68
42	Direct Characterization of a Reactive Lattice-Confined Ru ₂ Nitride by Photocrystallography. Journal of the American Chemical Society, 2017, 139, 2912-2915.	6.6	47
43	Partially Interpenetrated NbO Topology Metal–Organic Framework Exhibiting Selective Gas Adsorption. Crystal Growth and Design, 2017, 17, 2711-2717.	1.4	30
44	Stepwise self-assembly of a discrete molecular honeycomb using a multitopic metallo-organic ligand. Chemical Communications, 2017, 53, 6732-6735.	2.2	18
45	Metallo-Organic Ligand Designing Road for Constructing the First-Generation Dendritic Metallotriangle. Inorganic Chemistry, 2017, 56, 4065-4071.	1.9	13
46	High-Pressure Structural Response of an Insensitive Energetic Crystal: Dihydroxylammonium 5,5′-Bistetrazole-1,1′-diolate (TKX-50). Journal of Physical Chemistry C, 2017, 121, 5761-5767.	1.5	28
47	The crystalline sponge method: a solvent-based strategy to facilitate noncovalent ordered trapping of solid and liquid organic compounds. CrystEngComm, 2017, 19, 4528-4534.	1.3	27
48	Position Assignment and Oxidation State Recognition of Fe and Co Centers in Heterometallic Mixed-Valent Molecular Precursors for the Low-Temperature Preparation of Target Spinel Oxide Materials. Inorganic Chemistry, 2017, 56, 9574-9584.	1.9	12
49	Solvent exchange in a metal–organic framework single crystal monitored by dynamic <i>in situ</i> X-ray diffraction. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2017, 73, 669-674.	0.5	5
50	Incremental Tuning Up of Fluorous Phenazine Acceptors. Chemistry - A European Journal, 2016, 22, 3930-3936.	1.7	12
51	Copper Causes Regiospecific Formation of C ₄ F ₈ â€Containing Sixâ€Membered Rings and their Defluorination/Aromatization to C ₄ F ₄ â€Containing Rings in Triphenylene/1,4â€C ₄ F ₈ I ₂ Reactions. Chemistry - A European Journal, 2016, 22, 874-877.	1.7	16
52	Structures and structure-related electronic properties of new C60(CF3)10 isomers. Journal of Fluorine Chemistry, 2016, 185, 103-117.	0.9	7
53	Highly Efficient Cooperative Catalysis by Co ^{III} (Porphyrin) Pairs in Interpenetrating Metal–Organic Frameworks. Angewandte Chemie, 2016, 128, 13943-13947.	1.6	24
54	Highly Efficient Cooperative Catalysis by Co ^{III} (Porphyrin) Pairs in Interpenetrating Metalâ€"Organic Frameworks. Angewandte Chemie - International Edition, 2016, 55, 13739-13743.	7.2	78

#	Article	IF	Citations
55	Teaching Outside the Classroom: Field Trips in Crystallography Education for Chemistry Students. Journal of Chemical Education, 2016, 93, 1671-1675.	1.1	17
56	Redox Pairs of Diiron and Iron–Cobalt Complexes with High-Spin Ground States. Inorganic Chemistry, 2016, 55, 9725-9735.	1.9	13
57	Stacked charge stripes in the quasi-2D trilayer nickelate La ₄ Ni ₃ O ₈ . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8945-8950.	3.3	73
58	A New Approach to Non-Coordinating Anions: Lewis Acid Enhancement of Porphyrin Metal Centers in a Zwitterionic Metal–Organic Framework. Journal of the American Chemical Society, 2016, 138, 10293-10298.	6.6	85
59	High-Pressure Structural Response of an Insensitive Energetic Crystal: 1,1-Diamino-2,2-dinitroethene (FOX-7). Journal of Physical Chemistry C, 2016, 120, 27600-27607.	1.5	22
60	Stereoelectronic Effects in Cl ₂ Elimination from Binuclear Pt(III) Complexes. Inorganic Chemistry, 2016, 55, 11815-11820.	1.9	22
61	Highly Porous Zirconium Metal–Organic Frameworks with β-UH ₃ -like Topology Based on Elongated Tetrahedral Linkers. Journal of the American Chemical Society, 2016, 138, 8380-8383.	6.6	76
62	High-Pressure Crystal Structures of an Insensitive Energetic Crystal: 1,1-Diamino-2,2-dinitroethene. Journal of Physical Chemistry C, 2016, 120, 1218-1224.	1.5	42
63	Metallo-Supramolecular Self-Assembly of a Multicomponent Ditrigon Based on Complementary Terpyridine Ligand Pairing. Journal of the American Chemical Society, 2016, 138, 3651-3654.	6.6	77
64	The role of atropisomers on the photo-reactivity and fatigue of diarylethene-based metal–organic frameworks. New Journal of Chemistry, 2016, 40, 101-106.	1.4	78
65	Mesoporous Fluorinated Metal–Organic Frameworks with Exceptional Adsorption of Fluorocarbons and CFCs. Angewandte Chemie - International Edition, 2015, 54, 13902-13906.	7.2	95
66	Core Perylene Diimide Designs via Direct Bay―and <i>ortho</i> â€(Poly)trifluoromethylation: Synthesis, Isolation, Xâ€ray Structures, Optical and Electronic Properties. European Journal of Organic Chemistry, 2015, 6641-6654.	1.2	26
67	The crystalline sponge method: MOF terminal ligand effects. Chemical Communications, 2015, 51, 11252-11255.	2.2	67
68	A faux hawk fullerene with PCBM-like properties. Chemical Science, 2015, 6, 1801-1815.	3.7	8
69	Open metal sites dangled on cobalt trigonal prismatic clusters within porous MOF for CO ₂ capture. Inorganic Chemistry Frontiers, 2015, 2, 369-372.	3.0	23
70	Charge density investigations on [2,2]-paracyclophane – in data we trust. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2015, 71, 10-19.	0.5	20
71	A mesoporous metal–organic framework based on a shape-persistent macrocycle. Chemical Communications, 2015, 51, 6340-6342.	2.2	35
72	Remote Stabilization of Copper Paddlewheel Based Molecular Building Blocks in Metal–Organic Frameworks. Chemistry of Materials, 2015, 27, 2144-2151.	3.2	72

#	Article	IF	Citations
73	Porphyrin-Metalation-Mediated Tuning of Photoredox Catalytic Properties in Metal–Organic Frameworks. ACS Catalysis, 2015, 5, 5283-5291.	5.5	212
74	A versatile environmental control cell for <i>in situ</i> guest exchange single-crystal diffraction. Journal of Applied Crystallography, 2015, 48, 578-581.	1.9	11
75	High pressure induced charge transfer in 3d–4f bimetallic photomagnetic materials. Chemical Communications, 2015, 51, 8868-8871.	2.2	13
76	Trap-Free Halogen Photoelimination from Mononuclear Ni(III) Complexes. Journal of the American Chemical Society, 2015, 137, 6472-6475.	6.6	125
77	The local electric field favours more than exposed nitrogen atoms on CO ₂ capture: a case study on the rht -type MOF platform. Chemical Communications, 2015, 51, 9636-9639.	2.2	48
78	Cyclotetrabenzoin: Facile Synthesis of a Shapeâ€Persistent Molecular Square and Its Assembly into Hydrogenâ€Bonded Nanotubes. Chemistry - A European Journal, 2015, 21, 17205-17209.	1.7	36
79	Influence of Copper Oxidation State on the Bonding and Electronic Structure of Cobalt–Copper Complexes. Inorganic Chemistry, 2015, 54, 11330-11338.	1.9	12
80	Analysis of rapidly synthesized guest-filled porous complexes with synchrotron radiation: practical guidelines for the crystalline sponge method. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, 46-58.	0.0	79
81	Contemporary X-ray electron-density studies using synchrotron radiation. IUCrJ, 2014, 1, 267-280.	1.0	34
82	Advanced Crystallographic Program at ChemMatCARS at Advanced Photon Source. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C1727-C1727.	0.0	4
83	Thermally robust and porous noncovalent organic framework with high affinity for fluorocarbons and CFCs. Nature Communications, 2014, 5, 5131.	5.8	236
84	Chemical Bonding in a Linear Chromium Metal String Complex. Inorganic Chemistry, 2014, 53, 12489-12498.	1.9	21
85	Crystal Engineering of an nbo Topology Metal–Organic Framework for Chemical Fixation of CO ₂ under Ambient Conditions. Angewandte Chemie - International Edition, 2014, 53, 2615-2619.	7.2	505
86	Direct Xâ€ray Observation of Trapped CO ₂ in a Predesigned Porphyrinic Metal–Organic Framework. Chemistry - A European Journal, 2014, 20, 7632-7637.	1.7	39
87	Role of the Metal in the Bonding and Properties of Bimetallic Complexes Involving Manganese, Iron, and Cobalt. Journal of the American Chemical Society, 2014, 136, 1842-1855.	6.6	91
88	An elusive fulvene 1,7,11,24-C60(CF3)4and its unusual reactivity. Chemical Communications, 2014, 50, 1205-1208.	2.2	9
89	A novel manganese-doped large polyoxotitanate nanocluster. Dalton Transactions, 2014, 43, 3839-3841.	1.6	31
90	Facile Control of the Charge Density and Photocatalytic Activity of an Anionic Indium Porphyrin Framework via in Situ Metalation. Journal of the American Chemical Society, 2014, 136, 15881-15884.	6.6	144

#	Article	IF	CITATIONS
91	Photocrystallographic Observation of Halide-Bridged Intermediates in Halogen Photoeliminations. Journal of the American Chemical Society, 2014, 136, 15346-15355.	6.6	31
92	Poly(trifluoromethyl)azulenes: structures and acceptor properties. Chemical Communications, 2014, 50, 6263-6266.	2.2	16
93	Atomic properties and chemical bonding in the pyrite and marcasite polymorphs of FeS ₂ : a combined experimental and theoretical electron density study. Chemical Science, 2014, 5, 1408-1421.	3.7	65
94	Host Perturbation in a βâ€Hydroquinone Clathrate Studied by Combined Xâ€ray/Neutron Chargeâ€Density Analysis: Implications for Molecular Inclusion in Supramolecular Entities. Chemistry - A European Journal, 2014, 20, 8089-8098.	1.7	10
95	Phase Transition of [2,2]â€Paracyclophane – An End to an Apparently Endless Story. Chemistry - A European Journal, 2014, 20, 7048-7053.	1.7	27
96	Assembly and Stepwise Oxidation of Interpenetrated Coordination Cages Based on Phenothiazine. Angewandte Chemie - International Edition, 2013, 52, 10102-10106.	7.2	108
97	Mixed-Valent Dicobalt and Iron–Cobalt Complexes with High-Spin Configurations and Short Metal–Metal Bonds. Inorganic Chemistry, 2013, 52, 9216-9228.	1.9	41
98	Quantification of Site-Specific Cation Exchange in Metal–Organic Frameworks Using Multi-Wavelength Anomalous X-ray Dispersion. Chemistry of Materials, 2013, 25, 2998-3002.	3.2	49
99	A Large Manganeseâ€doped Polyoxotitanate Nanocluster: Ti ₁₄ MnO ₁₄ (OH) ₂ (OEt) ₂₈ . Journal of the Chinese Chemical Society, 2013, 60, 887-890.	0.8	25
100	Synthesis of Open-Shell, Bimetallic Mn/Fe Trinuclear Clusters. Journal of the American Chemical Society, 2013, 135, 14448-14458.	6.6	29
101	Two rare indium-based porous metal–metalloporphyrin frameworks exhibiting interesting CO2 uptake. CrystEngComm, 2013, 15, 9320.	1.3	45
102	Experimental and Theoretical Charge Densities of a Zinc-Containing Coordination Polymer, Zn(HCOO) ₂ (H ₂ O) ₂ . Inorganic Chemistry, 2013, 52, 297-305.	1.9	24
103	Lightâ€Triggered Guest Uptake and Release by a Photochromic Coordination Cage. Angewandte Chemie - International Edition, 2013, 52, 1319-1323.	7.2	461
104	Formation of a Metalloporphyrinâ∈Based Nanoreactor by Postsynthetic Metal–Ion Exchange of a Polyhedralâ€Cage Containing a Metal–Metalloporphyrin Framework. Chemistry - A European Journal, 2013, 19, 3297-3301.	1.7	82
105	A "pillar-freeâ€, highly porous metalloporphyrinic framework exhibiting eclipsed porphyrin arrays. Chemical Communications, 2013, 49, 2828.	2.2	47
106	Regioselective Sequential Additions of Nucleophiles and Electrophiles to Perfluoroalkylfullerenes: Which Cage C Atoms Are the Most Reactive and Why?. Chemistry - A European Journal, 2013, 19, 5070-5080.	1.7	17
107	Porous metal–organic framework based on a macrocyclic tetracarboxylate ligand exhibiting selective CO2 uptake. CrystEngComm, 2012, 14, 6115.	1.3	47
108	Synthesis of Binucleating Macrocycles and Their Nickel(II) Hydroxo- and Cyano-Bridged Complexes with Divalent Ions: Anatomical Variation of Ligand Features. Inorganic Chemistry, 2012, 51, 11017-11029.	1.9	53

#	Article	IF	CITATIONS
109	Crystal Engineering of a Microporous, Catalytically Active fcu Topology MOF Using a Customâ€Designed Metalloporphyrin Linker. Angewandte Chemie - International Edition, 2012, 51, 10082-10085.	7.2	154
110	Substituent effects in a series of 1,7-C60(RF)2 compounds (RF = CF3, C2F5, n-C3F7, i-C3F7, n-C4F9, s-C4F9,) Tj E Chemical Science, 2012, 3, 1399.	TQq0 0 0 1 3.7	rgBT /Overlo 25
111	Quest for highly porous metal–metalloporphyrin framework based upon a custom-designed octatopic porphyrin ligand. Chemical Communications, 2012, 48, 7173.	2.2	92
112	Testing the Concept of Hypervalency: Charge Density Analysis of K ₂ SO ₄ . Inorganic Chemistry, 2012, 51, 8607-8616.	1.9	93
113	Vertex-directed self-assembly of a high symmetry supermolecular building block using a custom-designed porphyrin. Chemical Science, 2012, 3, 2823.	3.7	92
114	Chemical tailoring of fullerene acceptors: synthesis, structures and electrochemical properties of perfluoroisopropylfullerenes. Chemical Communications, 2011, 47, 875-877.	2.2	20
115	Reactivity Differences between $\hat{l}\pm,\hat{l}^2$ -Unsaturated Carbonyls and Hydrazones Investigated by Experimental and Theoretical Electron Density and Electron Localizability Analyses. Journal of Physical Chemistry A, 2011, 115, 12715-12732.	1.1	25
116	A photo-induced excited state structure of a hetero-bimetallic ionic pair complex, Nd(DMA)4(H2O)4Fe(CN)6·3H2O, analyzed by single crystal X-ray diffraction. Chemical Communications, 2011, 47, 9486.	2.2	9
117	Three-Dimensional Porous Metal–Metalloporphyrin Framework Consisting of Nanoscopic Polyhedral Cages. Journal of the American Chemical Society, 2011, 133, 16322-16325.	6.6	142
118	Intermolecular Interactions and Electrostatic Properties of the \hat{l}^2 -Hydroquinone Apohost: Implications for Supramolecular Chemistry. Journal of Physical Chemistry A, 2011, 115, 12962-12972.	1.1	21
119	Analysis of the Photomagnetic Properties of Cyano-Bridged Heterobimetallic Complexes by X-Ray Diffraction. Inorganic Chemistry, 2011, 50, 10974-10984.	1.9	19
120	Poly(perfluoroalkylation) of Metallic Nitride Fullerenes Reveals Addition-Pattern Guidelines: Synthesis and Characterization of a Family of Sc ₃ (i>n($<$ i>n= 2 \hat{a} '16) and Their Radical Anions. Journal of the American Chemical Society, 2011, 133, 2672-2690.	6.6	73
121	Electron Density of Corannulene from Synchrotron Data at 12 K, Comparison with Fullerenes. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2010, 65, 452-460.	0.3	19
122	Photomagnetic Switching of Heterometallic Complexes [M(dmf) ₄ (H ₂ O) ₃ (ν N)Fe(CN) ₅]â <h<sub>2O (Normal, 2010, 16, 7215-7223.</h<sub>	Λ _Ξ Νd,) Τj Ε	ETQq0 0 0 rş
123	High-temperature and photochemical syntheses of C60 and C70 fullerene derivatives with linear perfluoroalkyl chains. Journal of Fluorine Chemistry, 2010, 131, 1198-1212.	0.9	19
124	Time-resolved synchrotron diffraction and theoretical studies of very short-lived photo-induced molecular species. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, 179-188.	0.3	42
125	Optimizing the accuracy and precision of the single-pulse Laue technique for synchrotron photo-crystallography. Journal of Synchrotron Radiation, 2010, 17, 479-485.	1.0	13
126	Site Specific X-ray Anomalous Dispersion of the Geometrically Frustrated Kagomé Magnet, Herbertsmithite, ZnCu ₃ (OH) ₆ Cl ₂ . Journal of the American Chemical Society, 2010, 132, 16185-16190.	6.6	166

#	Article	IF	CITATIONS
127	In Situ Highâ€Energy Synchrotron Radiation Study of Boehmite Formation, Growth, and Phase Transformation to Alumina in Sub―and Supercritical Water. Chemistry - A European Journal, 2009, 15, 13381-13390.	1.7	24
128	A Three-Dimensional Porous Metalâ^'Organic Framework Constructed from Two-Dimensional Sheets via Interdigitation Exhibiting Dynamic Features. Inorganic Chemistry, 2009, 48, 4616-4618.	1.9	44
129	Sc ₃ N@(C ₈₀ - <i>i>i</i> _h (7))(CF ₃) ₁₄ and Sc ₃ N@(C ₈₀ - <i>i>I</i> _h (7))(CF ₃) ₁₆ . Endohedral Metallofullerene Derivatives with Exohedral Addends on Four and Eight Triple-Hexagon Junctions. Does the scales of the	6.6	59
130	Capturing and Analyzing the Excited-State Structure of a Cu(I) Phenanthroline Complex by Time-Resolved Diffraction and Theoretical Calculations. Journal of the American Chemical Society, 2009, 131, 6566-6573.	6.6	123
131	A Large-Surface-Area Boracite-Network-Topology Porous MOF Constructed from a Conjugated Ligand Exhibiting a High Hydrogen Uptake Capacity. Inorganic Chemistry, 2009, 48, 7519-7521.	1.9	66
132	Synchrotron Xâ€Ray Chargeâ€Density Study of Coordination Polymer [Mn(HCOO) ₂ (H ₂ O) ₂] _{â^ž} . Chemistry - A European Journal, 2007, 13, 9775-9790.	1.7	38
133	In Situ High-Energy Synchrotron Radiation Study of Sol–Gel Nanoparticle Formation in Supercritical Fluids. Angewandte Chemie - International Edition, 2007, 46, 1113-1116.	7.2	69
134	Chemical bonding and intermolecular interactions in energetic materials: 1,3,4-trinitro-7,8-diazapentalene. Acta Crystallographica Section B: Structural Science, 2007, 63, 309-318.	1.8	25
135	Shedding Light on the Structure of a Photoinduced Transient Excimer by Time-Resolved Diffraction. Physical Review Letters, 2005, 94, 193003.	2.9	96
136	A very large Rh–Rh bond shortening on excitation of the [Rh2(1,8-diisocyano-p-menthane)4]2+ion by time-resolved synchrotron X-ray diffraction. Chemical Communications, 2004, , 2144-2145.	2.2	66
137	Geometry Changes of a Cu(I) Phenanthroline Complex on Photoexcitation in a Confining Medium by Time-Resolved X-ray Diffraction. Journal of the American Chemical Society, 2004, 126, 5980-5981.	6.6	77