Darren J Creek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1195889/publications.pdf

Version: 2024-02-01

128 papers	6,533 citations	43 h-index	90395 73 g-index
140	140	140	9259
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Resensitising proteasome inhibitor-resistant myeloma with sphingosine kinase 2 inhibition. Neoplasia, 2022, 24, 1-11.	2.3	12
2	Key signaling networks are dysregulated in patients with the adipose tissue disorder, lipedema. International Journal of Obesity, 2022, 46, 502-514.	1.6	15
3	Peroxide Antimalarial Drugs Target Redox Homeostasis in <i>Plasmodium falciparum</i> Infected Red Blood Cells. ACS Infectious Diseases, 2022, 8, 210-226.	1.8	23
4	The sphingosine 1-phosphate receptor 2/4 antagonist JTE-013 elicits off-target effects on sphingolipid metabolism. Scientific Reports, 2022, 12, 454.	1.6	8
5	Comparative metabolomics revealed key pathways associated with the synergistic killing of multidrug-resistant Klebsiella pneumoniae by a bacteriophage-polymyxin combination. Computational and Structural Biotechnology Journal, 2022, 20, 485-495.	1.9	12
6	Cell biological analysis reveals an essential role for Pfcerli2 in erythrocyte invasion by malaria parasites. Communications Biology, 2022, 5, 121.	2.0	7
7	A new mass spectral library for high-coverage and reproducible analysis of the ⟨i⟩Plasmodium falciparum⟨/i⟩–infected red blood cell proteome. GigaScience, 2022, 11, .	3.3	14
8	Lipidomics profiles in hepatocytes from nonalcoholic steatohepatitis patients differ markedly from ⟨i⟩in vitro⟨ i⟩ â€induced steatotic hepatocytes. FEBS Letters, 2022, , .	1.3	1
9	Ceramide-induced integrated stress response overcomes Bcl-2 inhibitor resistance in acute myeloid leukemia. Blood, 2022, 139, 3737-3751.	0.6	20
10	Dimeric Artesunate Glycerophosphocholine Conjugate Nano-Assemblies as Slow-Release Antimalarials to Overcome Kelch 13 Mutant Artemisinin Resistance. Antimicrobial Agents and Chemotherapy, 2022, 66, e0206521.	1.4	11
11	Red Blood Cell BCL-xL Is Required for Plasmodium falciparum Survival: Insights into Host-Directed Malaria Therapies. Microorganisms, 2022, 10, 824.	1.6	2
12	Glutaminase inhibition impairs CD8 TÂcell activation in STK11-/Lkb1-deficient lung cancer. Cell Metabolism, 2022, 34, 874-887.e6.	7.2	55
13	Reaction hijacking of tyrosine tRNA synthetase as a new whole-of-life-cycle antimalarial strategy. Science, 2022, 376, 1074-1079.	6.0	25
14	Chemoresistant Cancer Cell Lines Are Characterized by Migratory, Amino Acid Metabolism, Protein Catabolism and IFN1 Signalling Perturbations. Cancers, 2022, 14, 2763.	1.7	4
15	\hat{l}^2 -Adrenoceptor regulation of metabolism in U937 derived macrophages. Molecular Omics, 2021, 17, 583-595.	1.4	6
16	Sulforaphane Bioavailability and Effects on Blood Pressure in Women with Pregnancy Hypertension. Reproductive Sciences, 2021, 28, 1489-1497.	1.1	16
17	Discovery of Potent and Fast-Acting Antimalarial Bis-1,2,4-triazines. Journal of Medicinal Chemistry, 2021, 64, 4150-4162.	2.9	14
18	Synergy of the Polymyxin-Chloramphenicol Combination against New Delhi Metallo- \hat{l}^2 -Lactamase-Producing <i>Klebsiella pneumoniae</i> Is Predominately Driven by Chloramphenicol. ACS Infectious Diseases, 2021, 7, 1584-1595.	1.8	14

#	Article	IF	Citations
19	Nonâ€canonical metabolic pathways in the malaria parasite detected by isotopeâ€tracing metabolomics. Molecular Systems Biology, 2021, 17, e10023.	3.2	12
20	Analytical and Omics-Based Advances in the Study of Drug-Induced Liver Injury. Toxicological Sciences, 2021, 183, 1-13.	1.4	16
21	Genetic and pharmacological evidence for kinetic competition between alternative poly(A) sites in yeast. ELife, 2021, 10, .	2.8	5
22	Polymyxin-Induced Metabolic Perturbations in Human Lung Epithelial Cells. Antimicrobial Agents and Chemotherapy, 2021, 65, e0083521.	1.4	3
23	The Novel bis-1,2,4-Triazine MIPS-0004373 Demonstrates Rapid and Potent Activity against All Blood Stages of the Malaria Parasite. Antimicrobial Agents and Chemotherapy, 2021, 65, e0031121.	1.4	4
24	Ultraviolet/Visible and Near-Infrared Dual Spectroscopic Method for Detection and Quantification of Low-Level Malaria Parasitemia in Whole Blood. Analytical Chemistry, 2021, 93, 13302-13310.	3.2	13
25	Mesenteric lymphatic dysfunction promotes insulin resistance and represents a potential treatment target in obesity. Nature Metabolism, 2021, 3, 1175-1188.	5.1	56
26	Sphingolipid imbalance and inflammatory effects induced by uremic toxins in heart and kidney cells are reversed by dihydroceramide desaturase 1 inhibition. Toxicology Letters, 2021, 350, 133-142.	0.4	7
27	Discovery and development of 2-aminobenzimidazoles as potent antimalarials. European Journal of Medicinal Chemistry, 2021, 221, 113518.	2.6	11
28	Microbial metabolism of l-tyrosine protects against allergic airway inflammation. Nature Immunology, 2021, 22, 279-286.	7.0	52
29	Dynamic Protein Corona of Gold Nanoparticles with an Evolving Morphology. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 58238-58251.	4.0	23
30	Multi-omic Characterization of the Mode of Action of a Potent New Antimalarial Compound, JPC-3210, Against Plasmodium falciparum. Molecular and Cellular Proteomics, 2020, 19, 308-325.	2.5	30
31	Retargeting azithromycin analogues to have dual-modality antimalarial activity. BMC Biology, 2020, 18, 133.	1.7	13
32	Metabolomes and Lipidomes of the Infective Stages of the Gastrointestinal nematodes, Nippostrongylus brasiliensis and Trichuris muris. Metabolites, 2020, 10, 446.	1.3	15
33	Lipid A profiling and metabolomics analysis of paired polymyxin-susceptible and -resistant MDR <i>Klebsiella pneumoniae</i> clinical isolates from the same patients before and after colistin treatment. Journal of Antimicrobial Chemotherapy, 2020, 75, 2852-2863.	1.3	14
34	Sulfoxideâ€Containing Polymerâ€Coated Nanoparticles Demonstrate Minimal Protein Fouling and Improved Blood Circulation. Advanced Science, 2020, 7, 2000406.	5.6	43
35	Multi-omics analysis delineates the distinct functions of sub-cellular acetyl-CoA pools in Toxoplasma gondii. BMC Biology, 2020, 18, 67.	1.7	35
36	Restriction of essential amino acids dictates the systemic metabolic response to dietary protein dilution. Nature Communications, 2020, 11, 2894.	5.8	71

#	Article	IF	Citations
37	Polymyxins Bind to the Cell Surface of Unculturable <i>Acinetobacter baumannii</i> and Cause Unique Dependent Resistance. Advanced Science, 2020, 7, 2000704.	5.6	31
38	System-wide biochemical analysis reveals ozonide antimalarials initially act by disrupting Plasmodium falciparum haemoglobin digestion. PLoS Pathogens, 2020, 16, e1008485.	2.1	24
39	Measuring Sulforaphane and Its Metabolites in Human Plasma: A High Throughput Method. Molecules, 2020, 25, 829.	1.7	20
40	Off-label prescribing in the midst of a pandemic: The case of hydroxychloroquine. Australian Journal of General Practice, 2020, 49, .	0.3	6
41	Using the IDEOM Workflow for LCMS-Based Metabolomics Studies of Drug Mechanisms. Methods in Molecular Biology, 2020, 2104, 419-445.	0.4	5
42	The Development Process for Discovery and Clinical Advancement of Modern Antimalarials. Journal of Medicinal Chemistry, 2019, 62, 10526-10562.	2.9	53
43	Comparative Metabolomics Reveals Key Pathways Associated With the Synergistic Killing of Colistin and Sulbactam Combination Against Multidrug-Resistant Acinetobacter baumannii. Frontiers in Pharmacology, 2019, 10, 754.	1.6	21
44	Ozonide Antimalarials Alkylate Heme in the Malaria Parasite Plasmodium falciparum. ACS Infectious Diseases, 2019, 5, 2076-2086.	1.8	16
45	Synergistic Combination of Polymyxin B and Enrofloxacin Induced Metabolic Perturbations in Extensive Drug-Resistant Pseudomonas aeruginosa. Frontiers in Pharmacology, 2019, 10, 1146.	1.6	17
46	Metabolomics Study of the Synergistic Killing of Polymyxin B in Combination with Amikacin against Polymyxin-Susceptible and -Resistant Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2019, 64, .	1.4	28
47	Ozonide Antimalarial Activity in the Context of Artemisinin-Resistant Malaria. Trends in Parasitology, 2019, 35, 529-543.	1.5	40
48	Post-Genomic Approaches to Understanding Malaria Parasite Biology: Linking Genes to Biological Functions. ACS Infectious Diseases, 2019, 5, 1269-1278.	1.8	20
49	Global Metabolic Analyses of Acinetobacter baumannii. Methods in Molecular Biology, 2019, 1946, 321-328.	0.4	2
50	3,3′-Disubstituted $5,5$ ′-Bi($1,2,4$ -triazine) Derivatives with Potent in Vitro and in Vivo Antimalarial Activity. Journal of Medicinal Chemistry, 2019, 62, 2485-2498.	2.9	16
51	Comparative Metabolomics and Transcriptomics Reveal Multiple Pathways Associated with Polymyxin Killing in Pseudomonas aeruginosa. MSystems, 2019, 4, .	1.7	52
52	Discovery and Validation of Clinical Biomarkers of Cancer: A Review Combining Metabolomics and Proteomics. Proteomics, 2019, 19, e1700448.	1.3	73
53	Human plasma proteome association and cytotoxicity of nano-graphene oxide grafted with stealth polyethylene glycol and poly(2-ethyl-2-oxazoline). Nanoscale, 2018, 10, 10863-10875.	2.8	42
54	Alterations of Metabolic and Lipid Profiles in Polymyxin-Resistant Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	58

#	Article	IF	Citations
55	Parasite-Mediated Degradation of Synthetic Ozonide Antimalarials Impacts <i>In Vitro</i> Antimalarial Activity. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	17
56	A high parasite density environment induces transcriptional changes and cell death in <i>Plasmodium falciparum</i> blood stages. FEBS Journal, 2018, 285, 848-870.	2.2	21
57	NormalizeMets: assessing, selecting and implementing statistical methods for normalizing metabolomics data. Metabolomics, 2018, 14, 54.	1.4	47
58	Metabolic Analyses Revealed Time-Dependent Synergistic Killing by Colistin and Aztreonam Combination Against Multidrug-Resistant Acinetobacter baumannii. Frontiers in Microbiology, 2018, 9, 2776.	1.5	20
59	Mechanistic Insights From Global Metabolomics Studies into Synergistic Bactericidal Effect of a Polymyxin B Combination With Tamoxifen Against Cystic Fibrosis MDR Pseudomonas aeruginosa. Computational and Structural Biotechnology Journal, 2018, 16, 587-599.	1.9	19
60	Mutations in the pantothenate kinase of Plasmodium falciparum confer diverse sensitivity profiles to antiplasmodial pantothenate analogues. PLoS Pathogens, 2018, 14, e1006918.	2.1	24
61	Synergistic Killing of Polymyxin B in Combination With the Antineoplastic Drug Mitotane Against Polymyxin-Susceptible and -Resistant Acinetobacter baumannii: A Metabolomic Study. Frontiers in Pharmacology, 2018, 9, 359.	1.6	14
62	Benzoxaborole treatment perturbs S-adenosyl-L-methionine metabolism in Trypanosoma brucei. PLoS Neglected Tropical Diseases, 2018, 12, e0006450.	1.3	33
63	Dynamic structure and localization of G protein-coupled receptor (GPCR) complexes determines unique signalling outcomes. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-8-9.	0.0	0
64	Metabolomic Profiling of Serum from Myeloma and MGUS Patients - a Novel Strategy to Identify Potential Biomarkers of Myeloma Development and Progression. Blood, 2018, 132, 1891-1891.	0.6	0
65	Metabolomics-Based Elucidation of Active Metabolic Pathways in Erythrocytes and HSC-Derived Reticulocytes. Journal of Proteome Research, 2017, 16, 1492-1505.	1.8	29
66	Functional and genetic evidence that nucleoside transport is highly conserved in Leishmania species: Implications for pyrimidine-based chemotherapy. International Journal for Parasitology: Drugs and Drug Resistance, 2017, 7, 206-226.	1.4	32
67	Multi-omics Based Identification of Specific Biochemical Changes Associated With PfKelch13-Mutant Artemisinin-Resistant Plasmodium falciparum. Journal of Infectious Diseases, 2017, 215, 1435-1444.	1.9	84
68	Global Gene Expression Profile of Acinetobacter baumannii During Bacteremia. Journal of Infectious Diseases, 2017, 215, S52-S57.	1.9	38
69	Untargeted metabolomics analysis reveals key pathways responsible for the synergistic killing of colistin and doripenem combination against Acinetobacter baumannii. Scientific Reports, 2017, 7, 45527.	1.6	89
70	Plasma Proteome Association and Catalytic Activity of Stealth Polymerâ€Grafted Iron Oxide Nanoparticles. Small, 2017, 13, 1701528.	5.2	27
71	Sterol 14α-demethylase mutation leads to amphotericin B resistance in Leishmania mexicana. PLoS Neglected Tropical Diseases, 2017, 11, e0005649.	1.3	43
72	Plasmodium falciparum parasites deploy RhopH2 into the host erythrocyte to obtain nutrients, grow and replicate. ELife, 2017, 6, .	2.8	96

#	Article	lF	Citations
73	Strategies for Extending Metabolomics Studies with Stable Isotope Labelling and Fluxomics. Metabolites, 2016, 6, 32.	1.3	25
74	Optimized Method for Untargeted Metabolomics Analysis of MDA-MB-231 Breast Cancer Cells. Metabolites, 2016, 6, 30.	1.3	17
75	Metabolomics and lipidomics reveal perturbation of sphingolipid metabolism by a novel anti-trypanosomal 3-(oxazolo[4,5-b]pyridine-2-yl)anilide. Metabolomics, 2016, 12, 1.	1.4	28
76	Comparison of the Exposure Time Dependence of the Activities of Synthetic Ozonide Antimalarials and Dihydroartemisinin against K13 Wild-Type and Mutant Plasmodium falciparum Strains. Antimicrobial Agents and Chemotherapy, 2016, 60, 4501-4510.	1.4	49
77	Global metabolic analyses identify key differences in metabolite levels between polymyxin-susceptible and polymyxin-resistant Acinetobacter baumannii. Scientific Reports, 2016, 6, 22287.	1.6	49
78	Metabolomics-Based Screening of the Malaria Box Reveals both Novel and Established Mechanisms of Action. Antimicrobial Agents and Chemotherapy, 2016, 60, 6650-6663.	1.4	82
79	<i>Acinetobacter baumannii</i> phenylacetic acid metabolism influences infection outcome through a direct effect on neutrophil chemotaxis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9599-9604.	3.3	109
80	Population Pharmacokinetics and Pharmacodynamics of Lumefantrine in Young Ugandan Children Treated With Artemether-Lumefantrine for Uncomplicated Malaria. Journal of Infectious Diseases, 2016, 214, 1243-1251.	1.9	17
81	From Sphingosine Kinase to Dihydroceramide Desaturase: A Structure–Activity Relationship (SAR) Study of the Enzyme Inhibitory and Anticancer Activity of 4-((4-(4-Chlorophenyl)thiazol-2-yl)amino)phenol (SKI-II). Journal of Medicinal Chemistry, 2016, 59, 965-984.	2.9	52
82	Anthelmintic closantel enhances bacterial killing of polymyxin B against multidrug-resistant Acinetobacter baumannii. Journal of Antibiotics, 2016, 69, 415-421.	1.0	27
83	Metabolic Dysregulation Induced in <i>Plasmodium falciparum</i> by Dihydroartemisinin and Other Front-Line Antimalarial Drugs. Journal of Infectious Diseases, 2016, 213, 276-286.	1.9	71
84	Stage-Specific Changes in Plasmodium Metabolism Required for Differentiation and Adaptation to Different Host and Vector Environments. PLoS Pathogens, 2016, 12, e1006094.	2.1	82
85	An oncogenic role for sphingosine kinase 2. Oncotarget, 2016, 7, 64886-64899.	0.8	64
86	Population Pharmacokinetics of Piperaquine in Young Ugandan Children Treated With Dihydroartemisininâ€Piperaquine for Uncomplicated Malaria. Clinical Pharmacology and Therapeutics, 2015, 98, 87-95.	2.3	16
87	Host Reticulocytes Provide Metabolic Reservoirs That Can Be Exploited by Malaria Parasites. PLoS Pathogens, 2015, 11, e1004882.	2.1	67
88	Metabolomics continues to expand: highlights from the 2015 metabolomics conference. Metabolomics, 2015, 11, 1036-1040.	1.4	14
89	Potent Trypanocidal Curcumin Analogs Bearing a Monoenone Linker Motif Act on <i>Trypanosoma brucei</i> by Forming an Adduct with Trypanothione. Molecular Pharmacology, 2015, 87, 451-464.	1.0	24
90	Bestatin Induces Specific Changes in Trypanosoma cruzi Dipeptide Pool. Antimicrobial Agents and Chemotherapy, 2015, 59, 2921-2925.	1.4	8

#	Article	IF	Citations
91	What role can metabolomics play in the discovery and development of new medicines for infectious diseases?. Bioanalysis, 2015, 7, 629-631.	0.6	6
92	Probing the Metabolic Network in Bloodstream-Form Trypanosoma brucei Using Untargeted Metabolomics with Stable Isotope Labelled Glucose. PLoS Pathogens, 2015, 11, e1004689.	2.1	128
93	An attenuated total reflection (ATR) and Raman spectroscopic investigation into the effects of chloroquine on Plasmodium falciparum-infected red blood cells. Analyst, The, 2015, 140, 2236-2246.	1.7	38
94	TrypanoCyc: a community-led biochemical pathways database for Trypanosoma brucei. Nucleic Acids Research, 2015, 43, D637-D644.	6.5	35
95	Benznidazole Biotransformation and Multiple Targets in Trypanosoma cruzi Revealed by Metabolomics. PLoS Neglected Tropical Diseases, 2014, 8, e2844.	1.3	90
96	BCKDH: The Missing Link in Apicomplexan Mitochondrial Metabolism Is Required for Full Virulence of Toxoplasma gondii and Plasmodium berghei. PLoS Pathogens, 2014, 10, e1004263.	2.1	115
97	Determination of antiprotozoal drug mechanisms by metabolomics approaches. Parasitology, 2014, 141, 83-92.	0.7	47
98	Metabolite identification: are you sure? And how do your peers gauge your confidence?. Metabolomics, 2014, 10, 350-353.	1.4	205
99	Stable isotope-labeling studies in metabolomics: new insights into structure and dynamics of metabolic networks. Bioanalysis, 2014, 6, 511-524.	0.6	171
100	Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics, 2013, 9, 44-66.	1.4	452
101	Iron and heme metabolism in Plasmodium falciparum and the mechanism of action of artemisinins. Current Opinion in Microbiology, 2013, 16, 722-727.	2.3	99
102	Pharmacokinetic Predictors for Recurrent Malaria After Dihydroartemisinin-Piperaquine Treatment of Uncomplicated Malaria in Ugandan Infants. Journal of Infectious Diseases, 2013, 207, 1646-1654.	1.9	20
103	mzMatch–ISO: an R tool for the annotation and relative quantification of isotope-labelled mass spectrometry data. Bioinformatics, 2013, 29, 281-283.	1.8	91
104	Metabolomics Guides Rational Development of a Simplified Cell Culture Medium for Drug Screening against Trypanosoma brucei. Antimicrobial Agents and Chemotherapy, 2013, 57, 2768-2779.	1.4	88
105	Stable isotope labeled metabolomics improves identification of novel metabolites and pathways. Bioanalysis, 2013, 5, 1807-1810.	0.6	10
106	The 2â€methylcitrate cycle is implicated in the detoxification of propionate in <i><scp>T</scp>oxoplasma gondii</i> < Molecular Microbiology, 2013, 87, 894-908.	1.2	32
107	Pyrimidine Salvage in <i>Trypanosoma brucei</i> Bloodstream Forms and the Trypanocidal Action of Halogenated Pyrimidines. Molecular Pharmacology, 2013, 83, 439-453.	1.0	57
108	Untargeted Metabolomics Reveals a Lack Of Synergy between Nifurtimox and Eflornithine against Trypanosoma brucei. PLoS Neglected Tropical Diseases, 2012, 6, e1618.	1.3	101

#	Article	IF	CITATIONS
109	Evaluation of Coupling Reversed Phase, Aqueous Normal Phase, and Hydrophilic Interaction Liquid Chromatography with Orbitrap Mass Spectrometry for Metabolomic Studies of Human Urine. Analytical Chemistry, 2012, 84, 1994-2001.	3.2	176
110	IDEOM: an Excel interface for analysis of LC–MS-based metabolomics data. Bioinformatics, 2012, 28, 1048-1049.	1.8	307
111	Stable Isotope-Assisted Metabolomics for Network-Wide Metabolic Pathway Elucidation. Analytical Chemistry, 2012, 84, 8442-8447.	3.2	132
112	Metabolomic analysis of trypanosomatid protozoa. Molecular and Biochemical Parasitology, 2012, 181, 73-84.	0.5	54
113	Toward Global Metabolomics Analysis with Hydrophilic Interaction Liquid Chromatography–Mass Spectrometry: Improved Metabolite Identification by Retention Time Prediction. Analytical Chemistry, 2011, 83, 8703-8710.	3.2	326
114	Pathos: A web facility that uses metabolic maps to display experimental changes in metabolites identified by mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 3422-3426.	0.7	49
115	Semiâ€targeted analysis of metabolites using capillaryâ€flow ion chromatography coupled to highâ€resolution mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 3447-3452.	0.7	59
116	Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4400-4405.	3.3	332
117	Increased Risk of Early Vomiting among Infants and Young Children Treated with Dihydroartemisinin-Piperaquine Compared with Artemether-Lumefantrine for Uncomplicated Malaria. American Journal of Tropical Medicine and Hygiene, 2010, 83, 873-875.	0.6	17
118	A Molecular Mechanism for Eflornithine Resistance in African Trypanosomes. PLoS Pathogens, 2010, 6, e1001204.	2.1	155
119	The Structureâ^'Activity Relationship of the Antimalarial Ozonide Arterolane (OZ277). Journal of Medicinal Chemistry, 2010, 53, 481-491.	2.9	99
120	Stability of Peroxide Antimalarials in the Presence of Human Hemoglobin. Antimicrobial Agents and Chemotherapy, 2009, 53, 3496-3500.	1.4	21
121	Spiroadamantyl 1,2,4-trioxolane, 1,2,4-trioxane, and 1,2,4-trioxepane pairs: Relationship between peroxide bond iron(II) reactivity, heme alkylation efficiency, and antimalarial activity. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 4542-4545.	1.0	27
122	Quantum chemical study of the intermediate complex required for iron-mediated reactivity and antimalarial activity of dispiro-1,2,4-trioxolanes. Journal of Molecular Graphics and Modelling, 2008, 27, 394-400.	1.3	11
123	Relationship between Antimalarial Activity and Heme Alkylation for Spiro- and Dispiro-1,2,4-Trioxolane Antimalarials. Antimicrobial Agents and Chemotherapy, 2008, 52, 1291-1296.	1.4	104
124	Spiro- and Dispiro-1,2-dioxolanes:  Contribution of Iron(II)-Mediated One-Electron vs Two-Electron Reduction to the Activity of Antimalarial Peroxides. Journal of Medicinal Chemistry, 2007, 50, 5840-5847.	2.9	53
125	Comparative Antimalarial Activities of Six Pairs of 1,2,4,5-Tetraoxanes (Peroxide Dimers) and 1,2,4,5,7,8-Hexaoxonanes (Peroxide Trimers). Antimicrobial Agents and Chemotherapy, 2007, 51, 3033-3035.	1.4	17
126	Ironâ€mediated degradation kinetics of substituted dispiroâ€1,2,4â€trioxolane antimalarials. Journal of Pharmaceutical Sciences, 2007, 96, 2945-2956.	1.6	63

#	Article	IF	CITATIONS
127	Antimalarial activity of N-alkyl amine, carboxamide, sulfonamide, and urea derivatives of a dispiro-1,2,4-trioxolane piperidine. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5542-5545.	1.0	55
128	Kinetics of iron-mediated artemisinin degradation: Effect of solvent composition and iron salt. Journal of Pharmaceutical Sciences, 2005, 94, 1820-1829.	1.6	41