
Laurent K Verkoczy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1195869/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Role of IgM Antibodies in T Cell Lymphoma Protection in a Novel Model Resembling Anaplastic Large Cell Lymphoma. Journal of Immunology, 2021, 206, 2468-2477.	0.8	Ο
2	SARS-CoV-2 variant evolution in the United States: High accumulation of viral mutations over time likely through serial Founder Events and mutational bursts. PLoS ONE, 2021, 16, e0255169.	2.5	28
3	Engineering well-expressed, V2-immunofocusing HIV-1 envelope glycoprotein membrane trimers for use in heterologous prime-boost vaccine regimens. PLoS Pathogens, 2021, 17, e1009807.	4.7	13
4	Immune checkpoint modulation enhances HIV-1 antibody induction. Nature Communications, 2020, 11, 948.	12.8	27
5	The Chimpanzee SIV Envelope Trimer: Structure and Deployment as an HIV Vaccine Template. Cell Reports, 2019, 27, 2426-2441.e6.	6.4	35
6	Cross-Reactivity to Kynureninase Tolerizes B Cells That Express the HIV-1 Broadly Neutralizing Antibody 2F5. Journal of Immunology, 2019, 203, 3268-3281.	0.8	12
7	Targeted selection of HIV-specific antibody mutations by engineering B cell maturation. Science, 2019, 366, .	12.6	118
8	Human Ig knockin mice to study the development and regulation of <scp>HIV</scp> †broadly neutralizing antibodies. Immunological Reviews, 2017, 275, 89-107.	6.0	37
9	Immunodominance of Antibody Recognition of the HIV Envelope V2 Region in Ig-Humanized Mice. Journal of Immunology, 2017, 198, 1047-1055.	0.8	7
10	Vaccine Induction of Heterologous Tier 2 HIV-1 Neutralizing Antibodies in Animal Models. Cell Reports, 2017, 21, 3681-3690.	6.4	97
11	Humanized Immunoglobulin Mice. Advances in Immunology, 2017, 134, 235-352.	2.2	14
12	Initiation of HIV neutralizing B cell lineages with sequential envelope immunizations. Nature Communications, 2017, 8, 1732.	12.8	76
13	HIV-1 gp140 epitope recognition is influenced by immunoglobulin DH gene segment sequence. Immunogenetics, 2016, 68, 145-155.	2.4	18
14	HIV-1 Envelope Mimicry of Host Enzyme Kynureninase Does Not Disrupt Tryptophan Metabolism. Journal of Immunology, 2016, 197, 4663-4673.	0.8	6
15	Initiation of immune tolerance–controlled HIV gp41 neutralizing B cell lineages. Science Translational Medicine, 2016, 8, 336ra62.	12.4	86
16	Immune perturbations in HIV-1–infected individuals who make broadly neutralizing antibodies. Science Immunology, 2016, 1, aag0851.	11.9	120
17	Immune System Regulation in the Induction of Broadly Neutralizing HIV-1 Antibodies. Vaccines, 2014, 2, 1-14.	4.4	25
18	Progress in HIV-1 vaccine development. Journal of Allergy and Clinical Immunology, 2014, 134, 3-10.	2.9	62

LAURENT K VERKOCZY

#	Article	IF	CITATIONS
19	Autoreactivity in HIV-1 broadly neutralizing antibodies. Current Opinion in HIV and AIDS, 2014, 9, 224-234.	3.8	71
20	HIV-1 Envelope gp41 Broadly Neutralizing Antibodies: Hurdles for Vaccine Development. PLoS Pathogens, 2014, 10, e1004073.	4.7	26
21	Enhanced Antibody Responses to an HIV-1 Membrane-Proximal External Region Antigen in Mice Reconstituted with Cultured Lymphocytes. Journal of Immunology, 2014, 192, 3269-3279.	0.8	10
22	Modulation of Nonneutralizing HIV-1 gp41 Responses by an MHC-Restricted TH Epitope Overlapping Those of Membrane Proximal External Region Broadly Neutralizing Antibodies. Journal of Immunology, 2014, 192, 1693-1706.	0.8	14
23	Host Controls of HIV Neutralizing Antibodies. Science, 2014, 344, 588-589.	12.6	63
24	Redemption of autoreactive B cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9022-9023.	7.1	11
25	An autoreactive antibody from an SLE/HIV-1 individual broadly neutralizes HIV-1. Journal of Clinical Investigation, 2014, 124, 1835-1843.	8.2	93
26	Induction of HIV-1 Broad Neutralizing Antibodies in 2F5 Knock-in Mice: Selection against Membrane Proximal External Region–Associated Autoreactivity Limits T-Dependent Responses. Journal of Immunology, 2013, 191, 2538-2550.	0.8	77
27	Common Tolerance Mechanisms, but Distinct Cross-Reactivities Associated with gp41 and Lipids, Limit Production of HIV-1 Broad Neutralizing Antibodies 2F5 and 4E10. Journal of Immunology, 2013, 191, 1260-1275.	0.8	77
28	HIV-1 antibodies from infection and vaccination: insights for guiding vaccine design. Trends in Microbiology, 2012, 20, 532-539.	7.7	61
29	Differential Reactivity of Germ Line Allelic Variants of a Broadly Neutralizing HIV-1 Antibody to a gp41 Fusion Intermediate Conformation. Journal of Virology, 2011, 85, 11725-11731.	3.4	56
30	Role of immune mechanisms in induction of HIV-1 broadly neutralizing antibodies. Current Opinion in Immunology, 2011, 23, 383-390.	5.5	85
31	Rescue of HIV-1 Broad Neutralizing Antibody-Expressing B Cells in 2F5 VH × VL Knockin Mice Reveals Multiple Tolerance Controls. Journal of Immunology, 2011, 187, 3785-3797.	0.8	97
32	Autoreactivity in an HIV-1 broadly reactive neutralizing antibody variable region heavy chain induces immunologic tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 181-186.	7.1	172
33	Prolonged exposure of the HIV-1 gp41 membrane proximal region with L669S substitution. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5972-5977.	7.1	57
34	Speckled-like Pattern in the Germinal Center (SLIP-GC), a Nuclear GTPase Expressed in Activation-induced Deaminase-expressing Lymphomas and Germinal Center B Cells. Journal of Biological Chemistry, 2009, 284, 30652-30661.	3.4	20
35	Functional, Non-Clonal IgMa-Restricted B Cell Receptor Interactions with the HIV-1 Envelope gp41 Membrane Proximal External Region. PLoS ONE, 2009, 4, e7215.	2.5	20
36	Basal B Cell Receptor-Directed Phosphatidylinositol 3-Kinase Signaling Turns Off RAGs and Promotes B Cell-Positive Selection. Journal of Immunology, 2007, 178, 6332-6341.	0.8	92

LAURENT K VERKOCZY

#	Article	IF	CITATIONS
37	Antibody polyspecificity and neutralization of HIV-1: A hypothesis. Human Antibodies, 2006, 14, 59-67.	1.5	142
38	Split Tolerance in Peripheral B Cell Subsets in Mice Expressing a Low Level of Igκ-Reactive Ligand. Journal of Immunology, 2006, 176, 939-948.	0.8	16
39	An immunoglobulin Cκ-reactive single chain antibody fusion protein induces tolerance through receptor editing in a normal polyclonal immune system. Journal of Experimental Medicine, 2005, 201, 817-828.	8.5	61
40	A Role for Nuclear Factor Kappa B/Rel Transcription Factors in the Regulation of the Recombinase Activator Genes. Immunity, 2005, 22, 519-531.	14.3	80
41	Antibody polyspecificity and neutralization of HIV-1: a hypothesis. Human Antibodies, 2005, 14, 59-67.	1.5	109
42	Peripheral B lymphocyte tolerance. Keio Journal of Medicine, 2004, 53, 151-158.	1.1	2
43	Tolerance-induced receptor selection: scope, sensitivity, locus specificity, and relationship to lymphocyte-positive selection. Immunological Reviews, 2004, 197, 219-230.	6.0	19
44	The scope of receptor editing and its association with autoimmunity. Current Opinion in Immunology, 2004, 16, 808-814.	5.5	46
45	Mutagenesis by AID, a molecule critical to immunoglobulin hypermutation, is not caused by an alteration of the precursor nucleotide pool. Molecular Immunology, 2003, 40, 261-268.	2.2	8
46	Decreased frequency and highly aberrant spectrum of ultraviolet-induced mutations in the hprt gene of mouse fibroblasts expressing antisense RNA to DNA polymerase zeta. Molecular Cancer Research, 2003, 1, 836-47.	3.4	54
47	Haplotype exclusion and receptor editing: irreconcilable differences?. Seminars in Immunology, 2002, 14, 191-198.	5.6	3
48	Decreased Frequency of Somatic Hypermutation and Impaired Affinity Maturation but Intact Germinal Center Formation in Mice Expressing Antisense RNA to DNA Polymerase ζ. Journal of Immunology, 2001, 167, 327-335.	0.8	141
49	The bryophyte Physcomitrella patens replicates extrachromosomal transgenic elements. New Phytologist, 2000, 146, 391-402.	7.3	53
50	Characterization of the Human B Cell RAG-associated Gene,hBRAG, as a B Cell Receptor Signal-enhancing Glycoprotein Dimer That Associates with Phosphorylated Proteins in Resting B Cells. Journal of Biological Chemistry, 2000, 275, 20967-20979.	3.4	12
51	hBRAG, a novel B cell lineage cDNA encoding a type II transmembrane glycoprotein potentially involved in the regulation of recombination activating gene 1 (RAG1). European Journal of Immunology, 1998, 28, 2839-2853.	2.9	16