
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1195587/publications.pdf Version: 2024-02-01

Риш Пля

#	Article	IF	CITATIONS
1	Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics. Nature Communications, 2022, 13, 1536.	12.8	93
2	Crowdsourced RNA design discovers diverse, reversible, efficient, self-contained molecular switches. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2112979119.	7.1	19
3	Three-dimensional structure-guided evolution of a ribosome with tethered subunits. Nature Chemical Biology, 2022, 18, 990-998.	8.0	7
4	<i>De novo</i> 3D models of SARS-CoV-2 RNA elements from consensus experimental secondary structures. Nucleic Acids Research, 2021, 49, 3092-3108.	14.5	61
5	Structure of human telomerase holoenzyme with bound telomeric DNA. Nature, 2021, 593, 449-453.	27.8	106
6	Learning cis-regulatory principles of ADAR-based RNA editing from CRISPR-mediated mutagenesis. Nature Communications, 2021, 12, 2165.	12.8	9
7	PyRosetta Jupyter Notebooks Teach Biomolecular Structure Prediction and Design. The Biophysicist, 2021, 2, 108-122.	0.3	8
8	Functional and structural basis of extreme conservation in vertebrate 5′ untranslated regions. Nature Genetics, 2021, 53, 729-741.	21.4	17
9	RNA structure: a renaissance begins?. Nature Methods, 2021, 18, 439-439.	19.0	10
10	Geometric deep learning of RNA structure. Science, 2021, 373, 1047-1051.	12.6	190
11	Cryo-EM and antisense targeting of the 28-kDa frameshift stimulation element from the SARS-CoV-2 RNA genome. Nature Structural and Molecular Biology, 2021, 28, 747-754.	8.2	91
12	Cryo-EM structures of full-length Tetrahymena ribozyme at 3.1ÂÃ resolution. Nature, 2021, 596, 603-607.	27.8	59
13	How to Kinetically Dissect an RNA Machine. Biochemistry, 2021, 60, 3485-3490.	2.5	3
14	Theoretical basis for stabilizing messenger RNA through secondary structure design. Nucleic Acids Research, 2021, 49, 10604-10617.	14.5	67
15	RiboDraw: semiautomated two-dimensional drawing of RNA tertiary structure diagrams. NAR Genomics and Bioinformatics, 2021, 3, lqab091.	3.2	6
16	Ensuring scientific reproducibility in bio-macromolecular modeling via extensive, automated benchmarks. Nature Communications, 2021, 12, 6947.	12.8	16
17	Folding heterogeneity in the essential human telomerase RNA three-way junction. Rna, 2020, 26, 1787-1800.	3.5	14
18	Macromolecular modeling and design in Rosetta: recent methods and frameworks. Nature Methods, 2020, 17, 665-680.	19.0	513

#	Article	IF	CITATIONS
19	RNA genome conservation and secondary structure in SARS-CoV-2 and SARS-related viruses: a first look. Rna, 2020, 26, 937-959.	3.5	211
20	Anomalous Reverse Transcription through Chemical Modifications in Polyadenosine Stretches. Biochemistry, 2020, 59, 2154-2170.	2.5	8
21	FARFAR2: Improved De Novo Rosetta Prediction of Complex Global RNA Folds. Structure, 2020, 28, 963-976.e6.	3.3	134
22	Transcription polymerase–catalyzed emergence of novel RNA replicons. Science, 2020, 368, .	12.6	19
23	Accelerated cryo-EM-guided determination of three-dimensional RNA-only structures. Nature Methods, 2020, 17, 699-707.	19.0	119
24	RNA-Puzzles Round IV: 3D structure predictions of four ribozymes and two aptamers. Rna, 2020, 26, 982-995.	3.5	100
25	A conserved RNA structural motif for organizing topology within picornaviral internal ribosome entry sites. Nature Communications, 2019, 10, 3629.	12.8	15
26	Computational design of three-dimensional RNA structure and function. Nature Nanotechnology, 2019, 14, 866-873.	31.5	49
27	Sequence-dependent RNA helix conformational preferences predictably impact tertiary structure formation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16847-16855.	7.1	38
28	Automated Design of Diverse Stand-Alone Riboswitches. ACS Synthetic Biology, 2019, 8, 1838-1846.	3.8	34
29	Scientific Discovery Games for Biomedical Research. Annual Review of Biomedical Data Science, 2019, 2, 253-279.	6.5	13
30	EternaBrain: Automated RNA design through move sets and strategies from an Internet-scale RNA videogame. PLoS Computational Biology, 2019, 15, e1007059.	3.2	16
31	RNA 3D structure prediction guided by independent folding of homologous sequences. BMC Bioinformatics, 2019, 20, 512.	2.6	21
32	A unified mechanism for intron and exon definition and back-splicing. Nature, 2019, 573, 375-380.	27.8	114
33	Structure and ligand binding of the glutamine-II riboswitch. Nucleic Acids Research, 2019, 47, 7666-7675.	14.5	17
34	Using Rosetta for RNA homology modeling. Methods in Enzymology, 2019, 623, 177-207.	1.0	17
35	Evaluating riboswitch optimality. Methods in Enzymology, 2019, 623, 417-450.	1.0	9
36	A Quantitative and Predictive Model for RNA Binding by Human Pumilio Proteins. Molecular Cell, 2019, 74, 966-981.e18.	9.7	55

Rнiju Das

#	Article	IF	CITATIONS
37	Blind tests of RNA–protein binding affinity prediction. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8336-8341.	7.1	21
38	Spontaneous driving forces give rise to proteinâ^'RNA condensates with coexisting phases and complex material properties. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7889-7898.	7.1	365
39	Cryo-EM structure of a 40ÂkDa SAM-IV riboswitch RNA at 3.7 à resolution. Nature Communications, 2019, 10, 5511.	12.8	90
40	Sampling Native-like Structures of RNA-Protein Complexes through Rosetta Folding and Docking. Structure, 2019, 27, 140-151.e5.	3.3	34
41	Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nature Reviews Molecular Cell Biology, 2018, 19, 158-174.	37.0	577
42	Hidden Structural Modules in a Cooperative RNA Folding Transition. Cell Reports, 2018, 22, 3240-3250.	6.4	20
43	Webâ€accessible molecular modeling with Rosetta: The Rosetta Online Server that Includes Everyone (ROSIE). Protein Science, 2018, 27, 259-268.	7.6	47
44	Controllable molecular motors engineered from myosin and RNA. Nature Nanotechnology, 2018, 13, 34-40.	31.5	19
45	Ribosome-induced RNA conformational changes in a viral 3′-UTR sense and regulate translation levels. Nature Communications, 2018, 9, 5074.	12.8	19
46	De novo computational RNA modeling into cryo-EM maps of large ribonucleoprotein complexes. Nature Methods, 2018, 15, 947-954.	19.0	45
47	Updates to the RNA mapping database (RMDB), version 2. Nucleic Acids Research, 2018, 46, D375-D379.	14.5	19
48	An Activity Switch in Human Telomerase Based on RNA Conformation and Shaped by TCAB1. Cell, 2018, 174, 218-230.e13.	28.9	64
49	Blind prediction of noncanonical RNA structure at atomic accuracy. Science Advances, 2018, 4, eaar5316.	10.3	37
50	Allosteric mechanism of the V. vulnificus adenine riboswitch resolved by four-dimensional chemical mapping. ELife, 2018, 7, .	6.0	16
51	High-Throughput Investigation of Diverse Junction Elements in RNA Tertiary Folding. Cell, 2018, 174, 377-390.e20.	28.9	72
52	Recording and Analyzing Nucleic Acid Distance Distributions with Xâ€Ray Scattering Interferometry (XSI). Current Protocols in Nucleic Acid Chemistry, 2018, 73, e54.	0.5	8
53	Primerize-2D: automated primer design for RNA multidimensional chemical mapping. Bioinformatics, 2017, 33, 1405-1406.	4.1	22
54	RNA-Puzzles Round III: 3D RNA structure prediction of five riboswitches and one ribozyme. Rna, 2017, 23, 655-672.	3.5	158

#	Article	IF	CITATIONS
55	The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design. Journal of Chemical Theory and Computation, 2017, 13, 3031-3048.	5.3	1,032
56	Single-molecule FRET-Rosetta reveals RNA structural rearrangements during human telomerase catalysis. Rna, 2017, 23, 175-188.	3.5	23
57	RNA structure inference through chemical mapping after accidental or intentional mutations. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9876-9881.	7.1	54
58	RNA structure through multidimensional chemical mapping. Quarterly Reviews of Biophysics, 2016, 49, e7.	5.7	46
59	Modeling Small Noncanonical RNA Motifs with the Rosetta FARFAR Server. Methods in Molecular Biology, 2016, 1490, 187-198.	0.9	11
60	Blind tests of RNA nearest-neighbor energy prediction. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8430-8435.	7.1	29
61	Principles for Predicting RNA Secondary Structure Design Difficulty. Journal of Molecular Biology, 2016, 428, 748-757.	4.2	67
62	RNA Structure Refinement Using the ERRASER-Phenix Pipeline. Methods in Molecular Biology, 2016, 1320, 269-282.	0.9	24
63	Rich RNA Structure Landscapes Revealed by Mutate-and-Map Analysis. PLoS Computational Biology, 2015, 11, e1004473.	3.2	49
64	Automated band annotation for RNA structure probing experiments with numerous capillary electrophoresis profiles. Bioinformatics, 2015, 31, 2808-2815.	4.1	21
65	RNA-Redesign: a web server for fixed-backbone 3D design of RNA: Figure 1 Nucleic Acids Research, 2015, 43, W498-W501.	14.5	8
66	Primerize: automated primer assembly for transcribing non-coding RNA domains. Nucleic Acids Research, 2015, 43, W522-W526.	14.5	41
67	Modeling Complex RNA Tertiary Folds with Rosetta. Methods in Enzymology, 2015, 553, 35-64.	1.0	84
68	<i>RNA-Puzzles</i> Round II: assessment of RNA structure prediction programs applied to three large RNA structures. Rna, 2015, 21, 1066-1084.	3.5	161
69	RNA regulons in Hox 5′ UTRs confer ribosome specificity to gene regulation. Nature, 2015, 517, 33-38.	27.8	258
70	Consistent global structures of complex RNA states through multidimensional chemical mapping. ELife, 2015, 4, e07600.	6.0	57
71	Structure determination of noncanonical RNA motifs guided by 1H NMR chemical shifts. Nature Methods, 2014, 11, 413-416.	19.0	72
72	Blind Predictions of DNA and RNA Tweezers Experiments with Force and Torque. PLoS Computational Biology, 2014, 10, e1003756.	3.2	36

Rнiju Das

#	Article	IF	CITATIONS
73	High-throughput mutate-map-rescue evaluates SHAPE-directed RNA structure and uncovers excited states. Rna, 2014, 20, 1815-1826.	3.5	55
74	Bayesian Energy Landscape Tilting: Towards Concordant Models of Molecular Ensembles. Biophysical Journal, 2014, 106, 1381-1390.	0.5	58
75	Understanding Nucleic Acid–Ion Interactions. Annual Review of Biochemistry, 2014, 83, 813-841.	11.1	358
76	RNA design rules from a massive open laboratory. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2122-2127.	7.1	264
77	Double-stranded RNA under force and torque: Similarities to and striking differences from double-stranded DNA. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15408-15413.	7.1	162
78	Scientific rigor through videogames. Trends in Biochemical Sciences, 2014, 39, 507-509.	7.5	15
79	Challenging the state of the art in protein structure prediction: Highlights of experimental target structures for the 10th Critical Assessment of Techniques for Protein Structure Prediction Experiment CASP10. Proteins: Structure, Function and Bioinformatics, 2014, 82, 26-42.	2.6	53
80	Standardization of RNA Chemical Mapping Experiments. Biochemistry, 2014, 53, 3063-3065.	2.5	63
81	The Mutate-and-Map Protocol for Inferring Base Pairs in Structured RNA. Methods in Molecular Biology, 2014, 1086, 53-77.	0.9	43
82	Massively Parallel RNA Chemical Mapping with a Reduced Bias MAP-Seq Protocol. Methods in Molecular Biology, 2014, 1086, 95-117.	0.9	60
83	Remodeling a β-peptide bundle. Chemical Science, 2013, 4, 319-324.	7.4	18
84	Advances, Interactions, and Future Developments in the CNS, Phenix, and Rosetta Structural Biology Software Systems. Annual Review of Biophysics, 2013, 42, 265-287.	10.0	88
85	HiTRACE-Web: an online tool for robust analysis of high-throughput capillary electrophoresis. Nucleic Acids Research, 2013, 41, W492-W498.	14.5	34
86	Correcting pervasive errors in RNA crystallography through enumerative structure prediction. Nature Methods, 2013, 10, 74-76.	19.0	138
87	Adding Diverse Noncanonical Backbones to Rosetta: Enabling Peptidomimetic Design. PLoS ONE, 2013, 8, e67051.	2.5	59
88	Atomic-Accuracy Prediction of Protein Loop Structures through an RNA-Inspired Ansatz. PLoS ONE, 2013, 8, e74830.	2.5	17
89	Serverification of Molecular Modeling Applications: The Rosetta Online Server That Includes Everyone (ROSIE). PLoS ONE, 2013, 8, e63906.	2.5	348
90	â€~Hidden' states are pervasive in RNA folding: detection and dissection through mutateâ€andâ€map experiments. FASEB Journal, 2013, 27, 96.2.	0.5	0

#	Article	IF	CITATIONS
91	Ultraviolet Shadowing of RNA Can Cause Significant Chemical Damage in Seconds. Scientific Reports, 2012, 2, 517.	3.3	64
92	An RNA Mapping DataBase for curating RNA structure mapping experiments. Bioinformatics, 2012, 28, 3006-3008.	4.1	93
93	<i>RNA-Puzzles</i> : A CASP-like evaluation of RNA three-dimensional structure prediction. Rna, 2012, 18, 610-625.	3.5	241
94	Metal-ion rescue revisited: Biochemical detection of site-bound metal ions important for RNA folding. Rna, 2012, 18, 1123-1141.	3.5	36
95	Quantitative Dimethyl Sulfate Mapping for Automated RNA Secondary Structure Inference. Biochemistry, 2012, 51, 7037-7039.	2.5	119
96	Are Protein Force Fields Getting Better? A Systematic Benchmark on 524 Diverse NMR Measurements. Journal of Chemical Theory and Computation, 2012, 8, 1409-1414.	5.3	347
97	Why Can't We Predict RNA Structure At Atomic Resolution?. Nucleic Acids and Molecular Biology, 2012, , 43-65.	0.2	8
98	Automated RNA Structure Prediction Uncovers a Kink-Turn Linker in Double Glycine Riboswitches. Journal of the American Chemical Society, 2012, 134, 1404-1407.	13.7	47
99	Understanding the Errors of SHAPE-Directed RNA Structure Modeling. Biochemistry, 2011, 50, 8049-8056.	2.5	86
100	HiTRACE: high-throughput robust analysis for capillary electrophoresis. Bioinformatics, 2011, 27, 1798-1805.	4.1	86
101	A two-dimensional mutate-and-map strategy for non-coding RNA structure. Nature Chemistry, 2011, 3, 954-962.	13.6	113
102	Rosetta3. Methods in Enzymology, 2011, 487, 545-574.	1.0	1,620
103	Four Small Puzzles That Rosetta Doesn't Solve. PLoS ONE, 2011, 6, e20044.	2.5	61
104	A mutate-and-map strategy accurately infers the base pairs of a 35-nucleotide model RNA. Rna, 2011, 17, 522-534.	3.5	45
105	An enumerative stepwise ansatz enables atomic-accuracy RNA loop modeling. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20573-20578.	7.1	63
106	Sharing and archiving nucleic acid structure mapping data. Rna, 2011, 17, 1204-1212.	3.5	28
107	Quantitative comparison of villin headpiece subdomain simulations and triplet-triplet energy transfer experiments. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12734-12739.	7.1	64
108	Rosetta in CAPRI rounds 13–19. Proteins: Structure, Function and Bioinformatics, 2010, 78, 3212-3218.	2.6	20

Rнiju Das

#	Article	IF	CITATIONS
109	Atomic accuracy in predicting and designing noncanonical RNA structure. Nature Methods, 2010, 7, 291-294.	19.0	328
110	A Mutate-and-Map Strategy for Inferring Base Pairs in Structured Nucleic Acids: Proof of Concept on a DNA/RNA Helix. Biochemistry, 2010, 49, 7414-7416.	2.5	34
111	Simultaneous prediction of protein folding and docking at high resolution. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18978-18983.	7.1	145
112	A robust peak detection method for RNA structure inference by high-throughput contact mapping. Bioinformatics, 2009, 25, 1137-1144.	4.1	16
113	Response to Comment on "Remeasuring the Double Helix― Science, 2009, 325, 538-538.	12.6	13
114	Structure prediction for CASP8 with allâ€atom refinement using Rosetta. Proteins: Structure, Function and Bioinformatics, 2009, 77, 89-99.	2.6	425
115	Prospects forde novophasing withde novoprotein models. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 169-175.	2.5	32
116	Coarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters. Rna, 2009, 15, 189-199.	3.5	300
117	Macromolecular Modeling with Rosetta. Annual Review of Biochemistry, 2008, 77, 363-382.	11.1	841
118	Semiautomated and rapid quantification of nucleic acid footprinting and structure mapping experiments. Nature Protocols, 2008, 3, 1395-1401.	12.0	70
119	Remeasuring the Double Helix. Science, 2008, 322, 446-449.	12.6	200
120	Structural inference of native and partially folded RNA by high-throughput contact mapping. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4144-4149.	7.1	79
121	A Molecular Ruler for Measuring Quantitative Distance Distributions. PLoS ONE, 2008, 3, e3229.	2.5	57
122	Automated <i>de novo</i> prediction of native-like RNA tertiary structures. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14664-14669.	7.1	397
123	Structural Transitions and Thermodynamics of a Glycine-Dependent Riboswitch from Vibrio cholerae. Journal of Molecular Biology, 2007, 365, 1393-1406.	4.2	116
124	Structure prediction for CASP7 targets using extensive all-atom refinement with Rosetta@home. Proteins: Structure, Function and Bioinformatics, 2007, 69, 118-128.	2.6	178
125	High-resolution structure prediction and the crystallographic phase problem. Nature, 2007, 450, 259-264.	27.8	296
126	The Paradoxical Behavior of a Highly Structured Misfolded Intermediate in RNA Folding. Journal of Molecular Biology, 2006, 363, 531-544.	4.2	92

#	Article	IF	CITATIONS
127	SAFA: Semi-automated footprinting analysis software for high-throughput quantification of nucleic acid footprinting experiments. Rna, 2005, 11, 344-354.	3.5	299
128	Probing counterion modulated repulsion and attraction between nucleic acid duplexes in solution. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1035-1040.	7.1	97
129	Determining the Mg2+Stoichiometry for Folding an RNA Metal Ion Core. Journal of the American Chemical Society, 2005, 127, 8272-8273.	13.7	98
130	Spatial Distribution of Competing lons around DNA in Solution. Physical Review Letters, 2004, 93, 248103.	7.8	106
131	Principles of RNA Compaction: Insights from the Equilibrium Folding Pathway of the P4-P6 RNA Domain in Monovalent Cations. Journal of Molecular Biology, 2004, 343, 1195-1206.	4.2	118
132	A measurement of H0 from Ryle Telescope, ASCA and ROSAT observations of Abell 773. Monthly Notices of the Royal Astronomical Society, 2003, 341, 937-940.	4.4	26
133	Exploration of the Transition State for Tertiary Structure Formation between an RNA Helix and a Large Structured RNA. Journal of Molecular Biology, 2003, 328, 1011-1026.	4.2	96
134	The Fastest Global Events in RNA Folding: Electrostatic Relaxation and Tertiary Collapse of the Tetrahymena Ribozyme. Journal of Molecular Biology, 2003, 332, 311-319.	4.2	130
135	Detection of a cosmic microwave background decrement towards a cluster of mJy radio sources. Monthly Notices of the Royal Astronomical Society, 2002, 331, 1-6.	4.4	9
136	Observations of the Sunyaev-Zel'dovich effect in the z=0.78 cluster MS 1137.5+6625. Monthly Notices of the Royal Astronomical Society, 2002, 334, 323-326.	4.4	4
137	A maximum-likelihood approach to removing radio sources from observations of the SunyaevZel'dovich effect, with application to Abell 611. Monthly Notices of the Royal Astronomical Society, 2002, 337, 1207-1214.	4.4	9