
Jacek Hawiger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11955519/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibition of Nuclear Translocation of Transcription Factor NF-κB by a Synthetic Peptide Containing a Cell Membrane-permeable Motif and Nuclear Localization Sequence. Journal of Biological Chemistry, 1995, 270, 14255-14258.	3.4	858
2	Intracellular protein therapy with SOCS3 inhibits inflammation and apoptosis. Nature Medicine, 2005, 11, 892-898.	30.7	262
3	Innate Immunity and Inflammation: A Transcriptional Paradigm. Immunologic Research, 2001, 23, 099-110.	2.9	203
4	Noninvasive intracellular delivery of functional peptides and proteins. Current Opinion in Chemical Biology, 1999, 3, 89-94.	6.1	146
5	The Tax Oncoprotein of Human T-cell Leukemia Virus Type 1 Associates with and Persistently Activates ll̂ºB Kinases Containing IKKα and IKKβ. Journal of Biological Chemistry, 1998, 273, 15891-15894.	3.4	142
6	Localization of a site interacting with human platelet receptor on carboxy-terminal segment of human fibrinogen γ chain. Biochemical and Biophysical Research Communications, 1982, 107, 181-187.	2.1	141
7	Interactive Sites in the MyD88 Toll/Interleukin (IL) 1 Receptor Domain Responsible for Coupling to the IL1β Signaling Pathway. Journal of Biological Chemistry, 2005, 280, 26152-26159.	3.4	102
8	Nuclear Import of Proinflammatory Transcription Factors Is Required for Massive Liver Apoptosis Induced by Bacterial Lipopolysaccharide. Journal of Biological Chemistry, 2004, 279, 48434-48442.	3.4	100
9	Preparation of functionally active cell-permeable peptides by single-step ligation of two peptide modules. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9184-9189.	7.1	99
10	Role of the Nuclear Localization Sequence in Fibroblast Growth Factor-1-stimulated Mitogenic Pathways. Journal of Biological Chemistry, 1996, 271, 5305-5308.	3.4	77
11	Proteolytic Processing of NF- κB/I κB in Human Monocytes. Journal of Biological Chemistry, 1995, 270, 9-12.	3.4	75
12	Isolation, characterization and synthesis of peptides from human fibrinogen that block the staphylococcal clumping reaction and construction of a synthetic clumping particle. Biochemistry, 1982, 21, 1414-1420.	2.5	67
13	Peptide-directed Suppression of a Pro-inflammatory Cytokine Response. Journal of Biological Chemistry, 2000, 275, 16774-16778.	3.4	54
14	Cellular import of functional peptides to block intracellular signaling. Current Opinion in Immunology, 1997, 9, 189-194.	5.5	49
15	Receptor/Transporter-independent Targeting of Functional Peptides across the Plasma Membrane. Journal of Biological Chemistry, 2004, 279, 11425-11431.	3.4	46
16	Suppression of Acute Lung Inflammation by Intracellular Peptide Delivery of a Nuclear Import Inhibitor. Molecular Therapy, 2009, 17, 796-802.	8.2	43
17	lκB Kinase Complex Is an Intracellular Target for Endotoxic Lipopolysaccharide in Human Monocytic Cells. Blood, 1999, 94, 1711-1716.	1.4	41
18	Decoding inflammation, its causes, genomic responses, and emerging countermeasures. Scandinavian Journal of Immunology, 2019, 90, e12812.	2.7	39

JACEK HAWIGER

#	Article	IF	CITATIONS
19	Fractalkine and CX3CR1 Mediate Leukocyte Capture by Endothelium in Response to Shiga Toxin. Journal of Immunology, 2008, 181, 1460-1469.	0.8	37
20	Suppression of Staphylococcal Enterotoxin B-induced Toxicity by a Nuclear Import Inhibitor. Journal of Biological Chemistry, 2004, 279, 19239-19246.	3.4	35
21	Targeting Nuclear Import Shuttles, Importins/Karyopherins alpha by a Peptide Mimicking the NFκB1/p50 Nuclear Localization Sequence. Journal of the American Heart Association, 2013, 2, e000386.	3.7	35
22	Extended Anti-inflammatory Action of a Degradation-resistant Mutant of Cell-penetrating Suppressor of Cytokine Signaling 3. Journal of Biological Chemistry, 2010, 285, 18727-18736.	3.4	26
23	Intracellular Delivery of a Cell-Penetrating SOCS1 that Targets IFN-Î ³ Signaling. Science Signaling, 2009, 2, ra37.	3.6	23
24	Nuclear Transport Modulation Reduces Hypercholesterolemia, Atherosclerosis, and Fatty Liver. Journal of the American Heart Association, 2013, 2, e000093.	3.7	20
25	The "Genomic Storm―Induced by Bacterial Endotoxin Is Calmed by a Nuclear Transport Modifier That Attenuates Localized and Systemic Inflammation. PLoS ONE, 2014, 9, e110183.	2.5	17
26	In Vivo Islet Protection by a Nuclear Import Inhibitor in a Mouse Model of Type 1 Diabetes. PLoS ONE, 2010, 5, e13235.	2.5	15
27	Binding of fibrinogen and von Willebrand factor to platelet glycoprotein IIb–IIIa complex. Methods in Enzymology, 1992, 215, 228-243.	1.0	14
28	EGF receptor–mediated FUS phosphorylation promotes its nuclear translocation and fibrotic signaling. Journal of Cell Biology, 2020, 219, .	5.2	12
29	Macromolecules That Link Platelets following Vessel Wall Injury. Annals of the New York Academy of Sciences, 1987, 509, 131-141.	3.8	11
30	The Adaptor CRADD/RAIDD Controls Activation of Endothelial Cells by Proinflammatory Stimuli. Journal of Biological Chemistry, 2014, 289, 21973-21983.	3.4	11
31	Survival, bacterial clearance and thrombocytopenia are improved in polymicrobial sepsis by targeting nuclear transport shuttles. PLoS ONE, 2017, 12, e0179468.	2.5	9
32	Lethality in a Murine Model of Pulmonary Anthrax is Reduced by Combining Nuclear Transport Modifier with Antimicrobial Therapy. PLoS ONE, 2012, 7, e30527.	2.5	8
33	Hyperlipidemic hypersensitivity to lethal microbial inflammation and its reversal by selective targeting of nuclear transport shuttles. Scientific Reports, 2021, 11, 11907.	3.3	4
34	Protection from Endotoxin Shock by Selective Targeting of Proinflammatory Signaling to the Nucleus Mediated by Importin Alpha 5. ImmunoHorizons, 2019, 3, 440-446.	1.8	4
35	lκB Kinase Complex Is an Intracellular Target for Endotoxic Lipopolysaccharide in Human Monocytic Cells. Blood, 1999, 94, 1711-1716.	1.4	2
36	Cellular import of functional peptides. , 2002, , 726-729.		0