Robert Korngold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11955311/publications.pdf

Version: 2024-02-01

79 papers 2,868 citations

186265 28 h-index 52 g-index

80 all docs 80 docs citations

80 times ranked

2261 citing authors

#	Article	IF	CITATIONS
1	A crucial role for antigen-presenting cells and alloantigen expression in graft-versus-leukemia responses. Nature Medicine, 2005, 11, 1244-1249.	30.7	223
2	T CELL SUBSETS AND GRAFT-VERSUS-HOST DISEASE. Transplantation, 1987, 44, 335-339.	1.0	188
3	Post-hematopoietic cell transplantation control of graft-versus-host disease by donor CD4+25+ T cells to allow an effective graft-versus-leukemia response. Biology of Blood and Marrow Transplantation, 2003, 9, 243-256.	2.0	180
4	A rationally designed CD4 analogue inhibits experimental allergic encephalomyelitis. Nature, 1994, 368, 744-746.	27.8	153
5	Recent advances in graft-versus-host disease (GVHD) prevention. Immunological Reviews, 1997, 157, 79-109.	6.0	129
6	Tolerance induction of alloreactive T cells via ex vivo blockade of the CD40:CD40L costimulatory pathway results in the generation of a potent immune regulatory cell. Blood, 2002, 99, 4601-4609.	1.4	126
7	Monoclonal Anti-Gamma Interferon Antibodies Enhance Experimental Allergic Encephalomyelitis. Autoimmunity, 1993, 16, 267-274.	2.6	104
8	Comparison of IgE and IgG antibody-dependent cytotoxicityin vitro and in a SCID mouse xenograft model of ovarian carcinoma. European Journal of Immunology, 1999, 29, 3527-3537.	2.9	104
9	Role of tumor necrosis factor-α in graft-versus-host disease and graft-versus-leukemia responses. Biology of Blood and Marrow Transplantation, 2003, 9, 292-303.	2.0	99
10	Lethal GVHD Across Minor Histocompatibility Barriers: Nature of the Effector Cells and Role of the H-2 Complex. Immunological Reviews, 1983, 71, 5-30.	6.0	93
11	Induction of acute GVHD by sex-mismatched H-Y antigens in the absence of functional radiosensitive host hematopoietic–derived antigen-presenting cells. Blood, 2012, 119, 3844-3853.	1.4	86
12	Apoptosis Is the Predominant Form of Epithelial Target Cell Injury in Acute Experimental Graft-Versus-Host Disease. Journal of Investigative Dermatology, 1996, 107, 377-383.	0.7	74
13	Bioactive Peptide Design Based on Protein Surface Epitopes. Journal of Biological Chemistry, 1997, 272, 12175-12180.	3.4	65
14	Importance of minor histocompatibility antigen expression by nonhematopoietic tissues in a CD4+ T cell–mediated graft-versus-host disease model. Journal of Clinical Investigation, 2003, 112, 1880-1886.	8.2	63
15	Differential use of FasL- and perforin-mediated cytolytic mechanisms by T-cell subsets involved in graft-versus-myeloid leukemia responses. Blood, 2000, 96, 1047-1055.	1.4	55
16	GRAFT-VERSUS-MYELOID LEUKEMIA RESPONSES FOLLOWING SYNGENEIC AND ALLOGENEIC BONE MARROW TRANSPLANTATION. Transplantation, 1994, 58, 278-286.	1.0	52
17	Synthetic Peptides Derived from the Fourth Domain of CD4 Antagonize CD4 Function and Inhibit T Cell Activation. Biochemical and Biophysical Research Communications, 1996, 224, 438-443.	2.1	51
18	Acute experimental allergic encephalomyelitis in radiation bone marrow chimeras between high and low susceptible strains of mice. Immunogenetics, 1986, 24, 309-315.	2.4	49

#	Article	IF	CITATIONS
19	Role of Mast Cells in Early Epithelial Target Cell Injury in Experimental Acute Graft-Versus-Host Disease. Journal of Investigative Dermatology, 1994, 102, 451-461.	0.7	48
20	Vbeta spectratype analysis reveals heterogeneity of CD4+ T-cell responses to minor histocompatibility antigens involved in graft-versus-host disease: Correlations with epithelial tissue infiltrate. Biology of Blood and Marrow Transplantation, 2001, 7, 2-13.	2.0	48
21	T CELL SUBSETS INVOLVED IN LETHAL GRAFT-VERSUS-HOST DISEASE DIRECTED TO IMMUNODOMINANT MINOR HISTOCOMPATIBILITY ANTIGENS. Transplantation, 1994, 57, 1095-1102.	1.0	47
22	CD4 dimerization and oligomerization: implications for T-cell function and structure-based drug design. Trends in Immunology, 1998, 19, 455-462.	7.5	46
23	Biology of Graft-vsHost Disease. Journal of Pediatric Hematology/Oncology, 1993, 15, 18-27.	0.6	44
24	An epithelial target site in experimental graft-versus-host disease and cytokine-mediated cytotoxicity is defined by cytokeratin 15 expression. Biology of Blood and Marrow Transplantation, 2003, 9, 559-570.	2.0	36
25	Immunoglobulin superfamily proteins: Structure, mechanisms, and drug discovery., 1997, 43, 367-382.		34
26	Strategies for the Identification of T Cell–Recognized TumorÂAntigens in Hematological Malignancies for ImprovedÂGraft-versus-Tumor Responses after AllogeneicÂBlood and Marrow Transplantation. Biology of Blood and Marrow Transplantation, 2015, 21, 1000-1007.	2.0	34
27	An analysis of the role of tumor necrosis factor in the phenotypic expression of actively induced experimental allergic orchitis and experimental allergic encephalomyelitis. Clinical Immunology and Immunopathology, 1990, 54, 442-453.	2.0	33
28	A Synthetic CD4-CDR3 Peptide Analog Enhances Bone Marrow Engraftment Across Major Histocompatibility Barriers. Blood, 1997, 89, 2880-2890.	1.4	32
29	Nonmyeloablative conditioning allows for more rapid T-cell repertoire reconstitution following allogeneic matched unrelated bone marrow transplantation compared to myeloablative approaches. Biology of Blood and Marrow Transplantation, 2001, 7, 656-664.	2.0	30
30	Graft-Versus-Host Disease in Experimental Allogeneic Bone Marrow Transplantation. Experimental Biology and Medicine, 1991, 197, 12-18.	2.4	27
31	Infusion of select leukemia-reactive TCR Vbeta+ T cells provides graft-versus-leukemia responses with minimization of graft-versus-host disease following murine hematopoietic stem cell transplantation. Biology of Blood and Marrow Transplantation, 2001, 7, 187-196.	2.0	26
32	Novel Expression of Vascular Cell Adhesion Molecule-1 (CD106) by Squamous Epithelium in Experimental Acute Graft-versus-Host Disease. American Journal of Pathology, 2002, 161, 763-770.	3.8	26
33	Cytokeratin15-Positive Basal Epithelial Cells Targeted in Graft-Versus-Host Disease Express a Constitutive Antiapoptotic Phenotype. Journal of Investigative Dermatology, 2007, 127, 106-115.	0.7	26
34	Specific donor $\hat{Vl^2}$ -associated CD4+ T-cell responses correlate with severe acute graft-versus-host disease directed to multiple minor histocompatibility antigens. Biology of Blood and Marrow Transplantation, 2004, 10, 91-105.	2.0	25
35	Interferon- \hat{I}^3 -inducible endothelial cell class II major histocompatibility complex expression correlates with strain- and site-specific susceptibility to experimental allergic encephalomyelitis. Journal of Neuroimmunology, 1993, 47, 15-22.	2.3	24
36	A structure-based approach to designing synthetic CD8 \hat{l} ± peptides that can inhibit cytotoxic T-lymphocyte responses. Nature Medicine, 1998, 4, 309-314.	30.7	23

#	Article	IF	CITATIONS
37	Dermal dendrocytes participate in the cellular pathology of experimental acute graft-versus-host disease. Journal of Cutaneous Pathology, 1998, 25, 426-434.	1.3	23
38	Identification of a Human CD4-CDR3-like Surface Involved in CD4+ T Cell Function. Journal of Biological Chemistry, 1996, 271, 22635-22640.	3.4	21
39	An Organic CD4 Inhibitor Reduces the Clinical and Pathological Symptoms of Acute Experimental Allergic Encephalomyelitis. Journal of Autoimmunity, 2002, 18, 169-179.	6.5	20
40	T-cell subsets mediate graft-versus-myeloid leukemia responses via different cytotoxic mechanisms. Biology of Blood and Marrow Transplantation, 2000, 6, 231-240.	2.0	19
41	Experimental allergic orchitis in mice. V. Resistance to actively induced disease in BALB/cJ substrain mice is mediated by CD4 + T cells. Immunogenetics, 1990, 32, 34-40.	2.4	17
42	Significance of selectively targeted apoptotic rete cells in graft-versus-host disease. Biology of Blood and Marrow Transplantation, 2004, 10, 357-365.	2.0	17
43	Evolution of responding CD4+ and CD8+ T-cell repertoires during the development of graft-versus-host disease directed to minor histocompatibility antigens. Biology of Blood and Marrow Transplantation, 2004, 10, 224-235.	2.0	16
44	Identification of the CD8 DE Loop as a Surface Functional Epitope. Journal of Biological Chemistry, 1998, 273, 16442-16445.	3.4	15
45	Inhibition of the Immunoproteasome Subunit LMP7 with ONXÂ0914 Ameliorates Graft-versus-Host Disease in an MHC-MatchedÂMinor Histocompatibility Antigen–Disparate Murine Model. Biology of Blood and Marrow Transplantation, 2015, 21, 1555-1564.	2.0	15
46	The Immunological Impact of Genetic Drift in the B10.BR Congenic Inbred Mouse Strain. Journal of Immunology, 2009, 183, 4261-4272.	0.8	14
47	Treatment with a Rho Kinase Inhibitor Improves Survival from Graft-Versus-Host Disease in Mice after MHC-Haploidentical Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 2014, 20, 1104-1111.	2.0	14
48	Experimental induction and ultrastructural characterization of apoptosis in murine acute cutaneous graft-versus-host disease. Archives of Dermatological Research, 1997, 289, 389-398.	1.9	13
49	Overlap between in vitro donor antihost and in vivo posttransplantation TCR \hat{V}^2 use: a new paradigm for designer allogeneic blood and marrow transplantation. Blood, 2008, 112, 3517-3525.	1.4	13
50	Graft-versus-Host Disease–Related Cytokine-Driven Apoptosis Depends on p73 in Cytokeratin 15–Positive Target Cells. Biology of Blood and Marrow Transplantation, 2012, 18, 841-851.	2.0	13
51	Differential use of FasL- and perforin-mediated cytolytic mechanisms by T-cell subsets involved in graft-versus-myeloid leukemia responses. Blood, 2000, 96, 1047-1055.	1.4	13
52	Effect of a cyclic heptapeptide based on the human CD4 domain $1 \text{ CCâ} \in \mathbb{Z}^2$ loop region on murine experimental allergic encephalomyelitis: inhibition of both primary and secondary responses. Journal of Neuroimmunology, 2001, 112, 115-128.	2.3	12
53	T-Cell Receptor Vα Spectratype Analysis of a CD4-Mediated T-Cell Response against Minor Histocompatibility Antigens Involved in Severe Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation, 2006, 12, 818-827.	2.0	12
54	Combination Therapy with a CD4-CDR3 Peptide Analog and Cyclosporin A to Prevent Graft-vs-Host Disease in a MHC-Haploidentical Bone Marrow Transplantation Model. Clinical Immunology and Immunopathology, 1998, 86, 115-119.	2.0	11

#	Article	IF	CITATIONS
55	Unraveling Graft-versus-Host Disease and Graft-versus-Leukemia Responses Using TCR \hat{V}^2 Spectratype Analysis in a Murine Bone Marrow Transplantation Model. Journal of Immunology, 2013, 190, 447-457.	0.8	11
56	Inter-Strain Tissue-Infiltrating T Cell Responses to Minor Histocompatibility Antigens Involved in Graft-Versus-Host Disease as Determined by $\hat{V^2}$ Spectratype Analysis. Journal of Immunology, 2008, 180, 5352-5359.	0.8	10
57	Antiviral Responses following L-Leucyl-L-Leucine Methyl Esther (LLME)-Treated Lymphocyte Infusions: Graft-versus-Infection without Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation, 2009, 15, 1609-1619.	2.0	9
58	Treatment with GM-CSF Secreting Myeloid Leukemia Cell Vaccine Prior to Autologous-BMT Improves the Survival of Leukemia-Challenged Mice. Biology of Blood and Marrow Transplantation, 2011, 17, 330-340.	2.0	9
59	T-Cell Receptor VÎ \pm Usage by Effector CD4+VÎ 2 11+ T Cells Mediating Graft-versus-Host Disease Directed to Minor Histocompatibility Antigens. Biology of Blood and Marrow Transplantation, 2007, 13, 265-276.	2.0	7
60	T Cell Repertoire Complexity Is Conserved after LLME Treatment of Donor Lymphocyte Infusions. Biology of Blood and Marrow Transplantation, 2007, 13, 1439-1447.	2.0	7
61	Leucyl-leucine methyl ester-treated haploidentical donor lymphocyte infusions can mediate graft-versus-leukemia activity with minimal graft-versus-host disease risk. Biology of Blood and Marrow Transplantation, 2002, 8, 303-315.	2.0	6
62	Leucyl-leucine methyl ester-treated haploidentical donor lymphocyte infusions can mediate graft-versus-leukemia activity with minimal graft-versus-host disease risk. Biology of Blood and Marrow Transplantation, 2002, 8, 303-15.	2.0	6
63	Cross-protective murine graft-versus-leukemia responses to phenotypically distinct myeloid leukemia lines. Biology of Blood and Marrow Transplantation, 2000, 6, 537-547.	2.0	5
64	Biology and Management of Acute Graft-Versus-Host Disease. Cancer Treatment and Research, 2009, 144, 257-275.	0.5	5
65	12E2. American Journal of Pathology, 2003, 163, 1817-1825.	3.8	3
66	Reconstitution of T Cell Subset Repertoire Diversity following Multiple Antigen-Mismatched Bone Marrow Transplantation. Biology of Blood and Marrow Transplantation, 2006, 12, 1092-1095.	2.0	3
67	Autoimmune inflammation of astrocyte transplants. Annals of Neurology, 1992, 31, 519-524.	5.3	2
68	A CD8 DE loop peptide analog prevents graft-versus-host disease in a multiple minor histocompatibility antigen-mismatched bone marrow transplantation model. Biology of Blood and Marrow Transplantation, 2004, 10, 669-680.	2.0	2
69	A CD4 Domain 1 CC′ Loop Peptide Analogue Enhances Engraftment in a Murine Model of Bone Marrow Transplantation with Sublethal Conditioning. Biology of Blood and Marrow Transplantation, 2005, 11, 979-987.	2.0	1
70	Comparison of IgE and IgG antibody-dependent cytotoxicity in vitro and in a SCID mouse xenograft model of ovarian carcinoma., 1999, 29, 3527.		1
71	Targeting of Immunological Agents. , 1998, , 2261-2264.		0
72	Hematopoietic stem cell transplantation for malignant diseases. , 2008, , 1223-1236.		0

#	Article	IF	Citations
73	Commentary in Honor of Peter C. Doherty. Viral Immunology, 2020, 33, 132-132.	1.3	O
74	Animal Models of Graft-vsHost Disease. , 2004, , 35-58.		0
75	Hematopoietic stem cell transplantation for malignant diseases. , 2013, , 1020-1031.		O
76	Sequential Evolution in the Ultrastructure of Epidermal Langerhans Cells or Indeterminate Cells in Experimental Acute Graft-Versus-Host Disease. The Showa University Journal of Medical Sciences, 1997, 9, 103-108.	0.1	0
77	Identification of a novel human CD8 surface region involved in MHC class I binding. , 2002, , 493-494.		O
78	Discovery of small non-peptidic CD4 inhibitors as novel immunotherapeutics., 2002,, 517-519.		0
79	A cyclic heptapeptide mimics CD4 domain 1 CC' loop and inhibits CD4 biological function. , 2002, , 609-610.		0