Jeffrey A Fawcett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11953516/publications.pdf

Version: 2024-02-01

687363 839539 6,687 18 13 18 citations g-index h-index papers 19 19 19 8982 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The genome of Shorea leprosula (Dipterocarpaceae) highlights the ecological relevance of drought in aseasonal tropical rainforests. Communications Biology, 2021, 4, 1166.	4.4	13
2	The Role of Gene Conversion between Transposable Elements in Rewiring Regulatory Networks. Genome Biology and Evolution, 2019, 11, 1723-1729.	2.5	13
3	High Similarity between Distantly Related Species of a Plant SINE Family Is Consistent with a Scenario of Vertical Transmission without Horizontal Transfers. Molecular Biology and Evolution, 2016, 33, 2593-2604.	8.9	12
4	Spreading good news. ELife, 2015, 4, .	6.0	1
5	The role of gene conversion in preserving rearrangement hotspots in the human genome. Trends in Genetics, 2013, 29, 561-568.	6.7	16
6	Significance and Biological Consequences of Polyploidization in Land Plant Evolution., 2013,, 277-293.		34
7	Higher Intron Loss Rate in Arabidopsis thaliana Than A. lyrata Is Consistent with Stronger Selection for a Smaller Genome. Molecular Biology and Evolution, 2012, 29, 849-859.	8.9	41
8	Neutral and Non-Neutral Evolution of Duplicated Genes with Gene Conversion. Genes, 2011, 2, 191-209.	2.4	36
9	The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nature Genetics, 2011, 43, 476-481.	21.4	814
1			
10	The genome of the domesticated apple (Malus × domestica Borkh.). Nature Genetics, 2010, 42, 833-839.	21.4	1,891
10	The genome of the domesticated apple (Malus × domestica Borkh.). Nature Genetics, 2010, 42, 833-839. Angiosperm polyploids and their road to evolutionary success. Trends in Evolutionary Biology, 2010, 2, 3.	21.4	1,891 57
	Angiosperm polyploids and their road to evolutionary success. Trends in Evolutionary Biology, 2010,		
11	Angiosperm polyploids and their road to evolutionary success. Trends in Evolutionary Biology, 2010, 2, 3.	0.4	57
11 12	Angiosperm polyploids and their road to evolutionary success. Trends in Evolutionary Biology, 2010, 2, 3. A Snapshot of the Emerging Tomato Genome Sequence. Plant Genome, 2009, 2, .	2.8	73
11 12 13	Angiosperm polyploids and their road to evolutionary success. Trends in Evolutionary Biology, 2010, 2, 3. A Snapshot of the Emerging Tomato Genome Sequence. Plant Genome, 2009, 2, . The flowering world: a tale of duplications. Trends in Plant Science, 2009, 14, 680-688. Plants with double genomes might have had a better chance to survive the Cretaceous–Tertiary extinction event. Proceedings of the National Academy of Sciences of the United States of America,	0.4 2.8 8.8	57 73 277
11 12 13	Angiosperm polyploids and their road to evolutionary success. Trends in Evolutionary Biology, 2010, 2, 3. A Snapshot of the Emerging Tomato Genome Sequence. Plant Genome, 2009, 2, . The flowering world: a tale of duplications. Trends in Plant Science, 2009, 14, 680-688. Plants with double genomes might have had a better chance to survive the Cretaceous–Tertiary extinction event. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5737-5742. The ⟨i⟩Physcomitrella⟨ji⟩ Genome Reveals Evolutionary Insights into the Conquest of Land by Plants.	0.4 2.8 8.8 7.1	57 73 277 552
11 12 13 14	Angiosperm polyploids and their road to evolutionary success. Trends in Evolutionary Biology, 2010, 2, 3. A Snapshot of the Emerging Tomato Genome Sequence. Plant Genome, 2009, 2, . The flowering world: a tale of duplications. Trends in Plant Science, 2009, 14, 680-688. Plants with double genomes might have had a better chance to survive the Cretaceous–Tertiary extinction event. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5737-5742. The ⟨i⟩ Physcomitrella⟨i⟩ Genome Reveals Evolutionary Insights into the Conquest of Land by Plants. Science, 2008, 319, 64-69. A High Quality Draft Consensus Sequence of the Genome of a Heterozygous Grapevine Variety. PLoS	0.4 2.8 8.8 7.1	57 73 277 552 1,712