
Jeffrey A Fawcett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11953516/publications.pdf Version: 2024-02-01

IFFEDEV & FANACETT

#	Article	IF	CITATIONS
1	The genome of the domesticated apple (Malus × domestica Borkh.). Nature Genetics, 2010, 42, 833-839.	21.4	1,891
2	The <i>Physcomitrella</i> Genome Reveals Evolutionary Insights into the Conquest of Land by Plants. Science, 2008, 319, 64-69.	12.6	1,712
3	A High Quality Draft Consensus Sequence of the Genome of a Heterozygous Grapevine Variety. PLoS ONE, 2007, 2, e1326.	2.5	945
4	The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nature Genetics, 2011, 43, 476-481.	21.4	814
5	Plants with double genomes might have had a better chance to survive the Cretaceous–Tertiary extinction event. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5737-5742.	7.1	552
6	The flowering world: a tale of duplications. Trends in Plant Science, 2009, 14, 680-688.	8.8	277
7	An ancient genome duplication contributed to the abundance of metabolic genes in the moss Physcomitrella patens. BMC Evolutionary Biology, 2007, 7, 130.	3.2	171
8	A Snapshot of the Emerging Tomato Genome Sequence. Plant Genome, 2009, 2, .	2.8	73
9	Angiosperm polyploids and their road to evolutionary success. Trends in Evolutionary Biology, 2010, 2, 3.	0.4	57
10	Higher Intron Loss Rate in Arabidopsis thaliana Than A. lyrata Is Consistent with Stronger Selection for a Smaller Genome. Molecular Biology and Evolution, 2012, 29, 849-859.	8.9	41
11	Neutral and Non-Neutral Evolution of Duplicated Genes with Gene Conversion. Genes, 2011, 2, 191-209.	2.4	36
12	Significance and Biological Consequences of Polyploidization in Land Plant Evolution. , 2013, , 277-293.		34
13	A SINE Family Widely Distributed in the Plant Kingdom and its Evolutionary History. Plant Molecular Biology, 2006, 61, 505-514.	3.9	28
14	The role of gene conversion in preserving rearrangement hotspots in the human genome. Trends in Genetics, 2013, 29, 561-568.	6.7	16
15	The Role of Gene Conversion between Transposable Elements in Rewiring Regulatory Networks. Genome Biology and Evolution, 2019, 11, 1723-1729.	2.5	13
16	The genome of Shorea leprosula (Dipterocarpaceae) highlights the ecological relevance of drought in aseasonal tropical rainforests. Communications Biology, 2021, 4, 1166.	4.4	13
17	High Similarity between Distantly Related Species of a Plant SINE Family Is Consistent with a Scenario of Vertical Transmission without Horizontal Transfers. Molecular Biology and Evolution, 2016, 33, 2593-2604.	8.9	12
18	Spreading good news. ELife, 2015, 4, .	6.0	1