
Dana M Blumenthal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1195111/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nutrient enrichment increases invertebrate herbivory and pathogen damage in grasslands. Journal of Ecology, 2022, 110, 327-339.	4.0	25
2	Global environmental changes more frequently offset than intensify detrimental effects of biological invasions. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	25
3	Water availability dictates how plant traits predict demographic rates. Ecology, 2022, 103, .	3.2	5
4	Plant traits related to precipitation sensitivity of species and communities in semiarid shortgrass prairie. New Phytologist, 2021, 229, 2007-2019.	7.3	38
5	Local adaptation to precipitation in the perennial grass <i>Elymus elymoides</i> : Tradeâ€offs between growth and drought resistance traits. Evolutionary Applications, 2021, 14, 524-535.	3.1	12
6	Tools and Technologies for Quantifying Spread and Impacts of Invasive Species. , 2021, , 243-265.		1
7	Understanding the combined impacts of weeds and climate change on crops. Environmental Research Letters, 2021, 16, 034043.	5.2	22
8	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
9	Traits link drought resistance with herbivore defence and plant economics in semiâ€arid grasslands: The central roles of phenology and leaf dry matter content. Journal of Ecology, 2020, 108, 2336-2351.	4.0	49
10	Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nature Climate Change, 2019, 9, 684-689.	18.8	269
11	Shifts in plant functional composition following longâ€ŧerm drought in grasslands. Journal of Ecology, 2019, 107, 2133-2148.	4.0	85
12	Understanding the nexus of rising CO2, climate change, and evolution in weed biology. Invasive Plant Science and Management, 2019, 12, 79-88.	1.1	35
13	Extending the osmometer method for assessing drought tolerance in herbaceous species. Oecologia, 2019, 189, 353-363.	2.0	40
14	Warming and Elevated CO2 Interact to Alter Seasonality and Reduce Variability of Soil Water in a Semiarid Grassland. Ecosystems, 2018, 21, 1533-1544.	3.4	11
15	Elevated <scp>CO</scp> ₂ and water addition enhance nitrogen turnover in grassland plants with implications for temporal stability. Ecology Letters, 2018, 21, 674-682.	6.4	20
16	Elevated <scp>CO</scp> ₂ induces substantial and persistent declines in forage quality irrespective of warming in mixedgrass prairie. Ecological Applications, 2018, 28, 721-735.	3.8	67
17	Root responses to elevated <scp>CO</scp> ₂ , warming and irrigation in a semiâ€arid grassland: Integrating biomass, length and life span in a 5â€year field experiment. Journal of Ecology, 2018, 106, 2176-2189.	4.0	39
18	Vulnerability of grazing and confined livestock in the Northern Great Plains to projected mid- and late-twenty-first century climate. Climatic Change, 2018, 146, 19-32.	3.6	52

DANA M BLUMENTHAL

#	Article	IF	CITATIONS
19	Dormant-Season Fire Inhibits Sixweeks Fescue and Enhances Forage Production in Shortgrass Steppe. Fire Ecology, 2018, 14, 33-49.	3.0	9
20	Elevated <scp>CO</scp> ₂ and warming cause interactive effects on soil carbon and shifts in carbon use by bacteria. Ecology Letters, 2018, 21, 1639-1648.	6.4	27
21	Seed traits and germination of native grasses and invasive forbs are largely insensitive to parental temperature and CO2 concentration. Seed Science Research, 2018, 28, 303-311.	1.7	5
22	Grazing moderates increases in C ₃ grass abundance over seven decades across a soil texture gradient in shortgrass steppe. Journal of Vegetation Science, 2017, 28, 562-572.	2.2	40
23	Digging into the roots of belowground carbon cycling following seven years of Prairie Heating and CO2 Enrichment (PHACE), Wyoming USA. Soil Biology and Biochemistry, 2017, 115, 169-177.	8.8	10
24	Soilâ€mediated effects of global change on plant communities depend on plant growth form. Ecosphere, 2017, 8, e01996.	2.2	5
25	Composted manure application promotes longâ€ŧerm invasion of semiâ€∎rid rangeland by <i>Bromus tectorum</i> . Ecosphere, 2017, 8, e01960.	2.2	14
26	Elevated CO2 and warming shift the functional composition of soil nematode communities in a semiarid grassland. Soil Biology and Biochemistry, 2016, 103, 46-51.	8.8	47
27	Historical wildfires do not promote cheatgrass invasion in a western Great Plains steppe. Biological Invasions, 2016, 18, 3333-3349.	2.4	23
28	Cheatgrass is favored by warming but not CO ₂ enrichment in a semiâ€arid grassland. Global Change Biology, 2016, 22, 3026-3038.	9.5	64
29	Drivers of Variation in Aboveground Net Primary Productivity and Plant Community Composition Differ Across a Broad Precipitation Gradient. Ecosystems, 2016, 19, 521-533.	3.4	47
30	Seasonality of soil moisture mediates responses of ecosystem phenology to elevated <scp>CO</scp> ₂ and warming in a semiâ€arid grassland. Journal of Ecology, 2015, 103, 1119-1130.	4.0	56
31	Increased seed consumption by biological control weevil tempers positive CO2 effect on invasive plant (Centaurea diffusa) fitness. Biological Control, 2015, 84, 36-43.	3.0	17
32	Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nature Communications, 2015, 6, 7710.	12.8	143
33	Long-term exposure to elevated CO ₂ enhances plant community stability by suppressing dominant plant species in a mixed-grass prairie. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15456-15461.	7.1	77
34	Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 2014, 508, 517-520.	27.8	669
35	Disentangling root responses to climate change in a semiarid grassland. Oecologia, 2014, 175, 699-711.	2.0	52
36	Integrated assessment of biological invasions. Ecological Applications, 2014, 24, 25-37.	3.8	46

3

DANA M BLUMENTHAL

#	Article	IF	CITATIONS
37	Evolution of fastâ€growing and more resistant phenotypes in introduced common mullein (<i>Verbascum thapsus</i>). Journal of Ecology, 2013, 101, 378-387.	4.0	46
38	Lifeâ€history constraints in grassland plant species: a growthâ€defence tradeâ€off is the norm. Ecology Letters, 2013, 16, 513-521.	6.4	165
39	Poised to prosper? A crossâ€system comparison of climate change effects on native and nonâ€native species performance. Ecology Letters, 2013, 16, 261-270.	6.4	256
40	Elevated <scp>CO</scp> ₂ does not offset greater water stress predicted under climate change for native and exotic riparian plants. New Phytologist, 2013, 197, 532-543.	7.3	51
41	Invasive forb benefits from water savings by native plants and carbon fertilization under elevated <scp>CO</scp> ₂ and warming. New Phytologist, 2013, 200, 1156-1165.	7.3	67
42	Indirect effects of parasites in invasions. Functional Ecology, 2012, 26, 1262-1274.	3.6	172
43	Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytologist, 2012, 196, 807-815.	7.3	209
44	Controls over Soil Nitrogen Pools in a Semiarid Grassland Under Elevated CO2 and Warming. Ecosystems, 2012, 15, 761-774.	3.4	45
45	Hybridization and invasion: an experimental test with diffuse knapweed (<i>Centaurea diffusa</i>) Tj ETQq1 1 C).784314 r 3.1	gBT_/Overlock
46	Linaria dalmatica invades south-facing slopes and less grazed areas in grazing-tolerant mixed-grass prairie. Biological Invasions, 2012, 14, 395-404.	2.4	16
47	C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature, 2011, 476, 202-205.	27.8	445
48	Evolution of growth but not structural or chemical defense in Verbascum thapsus (common mullein) following introduction to North America. Biological Invasions, 2011, 13, 2379-2389.	2.4	27
49	Invasive species and climate change: an agronomic perspective. Climatic Change, 2011, 105, 13-42.	3.6	185
50	Immobilizing nitrogen to control plant invasion. Oecologia, 2010, 163, 13-24.	2.0	126
51	Contrasting effects of elevated CO ₂ and warming on nitrogen cycling in a semiarid grassland. New Phytologist, 2010, 187, 426-437.	7.3	150
52	Controls on pathogen species richness in plants' introduced and native ranges: roles of residence time, range size and host traits. Ecology Letters, 2010, 13, 1525-1535.	6.4	150
53	Predicting plant invasions in an era of global change. Trends in Ecology and Evolution, 2010, 25, 310-318.	8.7	531
54	Restoring Competitors and Natural Enemies for Long-Term Control of Plant Invaders. Rangelands, 2010, 32, 16-20.	1.9	3

DANA M BLUMENTHAL

#	Article	IF	CITATIONS
55	Synergy between pathogen release and resource availability in plant invasion. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7899-7904.	7.1	210
56	An Efficient and Inexpensive System for Greenhouse Pot Rotation. Hortscience: A Publication of the American Society for Hortcultural Science, 2008, 43, 965-966.	1.0	9
57	Large-scale Aerial Images Capture Details of Invasive Plant Populations. Rangeland Ecology and Management, 2007, 60, 523-528.	2.3	17
58	INCREASED PLANT SIZE IN EXOTIC POPULATIONS: A COMMON-GARDEN TEST WITH 14 INVASIVE SPECIES. Ecology, 2007, 88, 2758-2765.	3.2	100
59	Interactions between resource availability and enemy release in plant invasion. Ecology Letters, 2006, 9, 887-895.	6.4	258
60	Effects of prairie restoration on weed invasions. Agriculture, Ecosystems and Environment, 2005, 107, 221-230.	5.3	42
61	ECOLOGY: Interrelated Causes of Plant Invasion. Science, 2005, 310, 243-244.	12.6	178
62	SOIL CARBON ADDITION CONTROLS WEEDS AND FACILITATES PRAIRIE RESTORATION. , 2003, 13, 605-615.		255