
Feng Bai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1194934/publications.pdf Version: 2024-02-01

FENC RAI

#	Article	IF	CITATIONS
1	Self-assembled manganese phthalocyanine nanoparticles with enhanced peroxidase-like activity for anti-tumor therapy. Nano Research, 2022, 15, 2347-2354.	10.4	21
2	Self-Assembled Porphyrin Nanoleaves with Unique Crossed Transportation of Photogenerated Carriers to Enhance Photocatalytic Hydrogen Production. Nano Letters, 2022, 22, 157-163.	9.1	23
3	Adsorption of DNA Oligonucleotides by Self-Assembled Metalloporphyrin Nanomaterials. Langmuir, 2022, 38, 3553-3560.	3.5	6
4	Morphology-controlled porphyrin nanocrystals with enhanced photocatalytic hydrogen production. Nano Research, 2022, 15, 5719-5725.	10.4	14
5	Precise magnetic resonance imaging-guided sonodynamic therapy for drug-resistant bacterial deep infection. Biomaterials, 2021, 264, 120386.	11.4	75
6	Noncovalent Self-Assembled Smart Gold(III) Porphyrin Nanodrug for Synergistic Chemo-Photothermal Therapy. Nano Letters, 2021, 21, 3418-3425.	9.1	39
7	From mouse to mouseâ€ear cress: Nanomaterials as vehicles in plant biotechnology. Exploration, 2021, 1, 9-20.	11.0	27
8	Trace-Water-Induced Competitive Coordination Synthesis and Functionalization of Porphyrinic Metal–Organic Framework Nanoparticles for Treatment of Hypoxic Tumors. ACS Applied Bio Materials, 2021, 4, 7322-7331.	4.6	13
9	Missing Links between the Structures and Optical Properties of Porphyrin Assemblies. Journal of Physical Chemistry C, 2021, 125, 22318-22327.	3.1	8
10	Bioactive Metal–Organic Frameworks with Specific Metal–Nitrogen (M–N) Active Sites for Efficient Sonodynamic Tumor Therapy. ACS Nano, 2021, 15, 20003-20012.	14.6	53
11	Central metal-derived co-assembly of biomimetic GdTPP/ZnTPP porphyrin nanocomposites for enhanced dual-modal imaging-guided photodynamic therapy. Biomaterials, 2020, 229, 119576.	11.4	48
12	Porphyrin-based photocatalysts for hydrogen production. MRS Bulletin, 2020, 45, 49-56.	3.5	40
13	Surfactant Assisted Crystallization of Porphyrin Molecules for Well-Defined Nanocrystals. ACS Symposium Series, 2020, , 311-329.	0.5	2
14	Porphyrin and macrocycle derivatives for electrochemical water splitting. MRS Bulletin, 2020, 45, 569-573.	3.5	13
15	Controllable Synthesis of Cobalt Porphyrin Nanocrystals through Micelle Confinement Self-Assembly. MRS Advances, 2020, 5, 2147-2155.	0.9	3
16	An efficient visible-light photocatalyst for CO2 reduction fabricated by cobalt porphyrin and graphitic carbon nitride via covalent bonding. Nano Research, 2020, 13, 2665-2672.	10.4	52
17	Self-assembly of functional nanoscale materials. MRS Bulletin, 2020, 45, 135-141.	3.5	4
18	Self-assembled supramolecular nanostructure photosensitizers for photocatalytic hydrogen evolution. APL Materials, 2020, 8, .	5.1	17

Feng Bai

#	Article	IF	CITATIONS
19	Surfactant-Assisted Cooperative Self-Assembly of Nanoparticles into Active Nanostructures. IScience, 2019, 11, 272-293.	4.1	66
20	Pressure Induced Nanoparticle Phase Behavior, Property, and Applications. Chemical Reviews, 2019, 119, 7673-7717.	47.7	164
21	Oriented Gold Nanorod Arrays: Selfâ€Assembly and Optoelectronic Applications. Angewandte Chemie, 2019, 131, 12082-12092.	2.0	11
22	Oriented Gold Nanorod Arrays: Selfâ€Assembly and Optoelectronic Applications. Angewandte Chemie - International Edition, 2019, 58, 11956-11966.	13.8	94
23	Microemulsion-Assisted Self-Assembly and Synthesis of Size-Controlled Porphyrin Nanocrystals with Enhanced Photocatalytic Hydrogen Evolution. Nano Letters, 2019, 19, 2614-2619.	9.1	85
24	Size- and shape-dependent photocatalysis of porphyrin nanocrystals. MRS Bulletin, 2019, 44, 172-177.	3.5	17
25	Morphology and Size-Dependent Visible-Light-Driven Photocatalytic Hydrogen Evolution of Porphyrin Assemblies. MRS Advances, 2019, 4, 2071-2078.	0.9	7
26	Bottom-up fabrication of graphitic carbon nitride nanosheets modified with porphyrin via covalent bonding for photocatalytic H2 evolution. Nano Research, 2019, 12, 3109-3115.	10.4	44
27	Synthesis of Self-Assembled Porphyrin Nanoparticle Photosensitizers. ACS Nano, 2018, 12, 3796-3803.	14.6	221
28	Self-Assembled One-Dimensional Porphyrin Nanostructures with Enhanced Photocatalytic Hydrogen Generation. Nano Letters, 2018, 18, 560-566.	9.1	169
29	Fabrication of Large-Area Arrays of Vertically Aligned Gold Nanorods. Nano Letters, 2018, 18, 4467-4472.	9.1	82
30	pH-Dependent Assembly of Porphyrin–Silica Nanocomposites and Their Application in Targeted Photodynamic Therapy. Nano Letters, 2017, 17, 6916-6921.	9.1	108
31	Nanocrystals: Pressureâ€Tuned Structure and Property of Optically Active Nanocrystals (Adv. Mater.) Tj ETQq1 1	0.784314 21.0	မ rgBT /Over
32	Morphology-Controlled Synthesis and Metalation of Porphyrin Nanoparticles with Enhanced Photocatalytic Performance. Nano Letters, 2016, 16, 6523-6528.	9.1	138
33	Pressureâ€Tuned Structure and Property of Optically Active Nanocrystals. Advanced Materials, 2016, 28, 1989-1993.	21.0	22
34	Nanomaterials under stress: A new opportunity for nanomaterials synthesis and engineering. MRS Bulletin, 2015, 40, 961-970.	3.5	9
35	Preparation of polymer microspheres with reactive epoxy group and amino groups as stabilizers for gold nanocolloids with recoverable catalysis. Colloid and Polymer Science, 2015, 293, 187-197.	2.1	16
36	Morphology-Controlled Self-Assembly and Synthesis of Photocatalytic Nanocrystals. Nano Letters, 2014, 14, 7175-7179.	9.1	119

Feng Bai

#	Article	IF	CITATIONS
37	Interfacial Self-Assembly Driven Formation of Hierarchically Structured Nanocrystals with Photocatalytic Activity. ACS Nano, 2014, 8, 827-833.	14.6	120
38	Monodisperse Fluorescent Organic/Inorganic Composite Nanoparticles: Tuning Full Color Spectrum. Chemistry of Materials, 2012, 24, 3415-3419.	6.7	52
39	Smart polydiacetylene nanowire paper with tunable colorimetric response. Journal of Materials Chemistry, 2012, 22, 14839.	6.7	23
40	Templated Photocatalytic Synthesis of Well-Defined Platinum Hollow Nanostructures with Enhanced Catalytic Performance for Methanol Oxidation. Nano Letters, 2011, 11, 3759-3762.	9.1	119
41	Porous One-Dimensional Nanostructures through Confined Cooperative Self-Assembly. Nano Letters, 2011, 11, 5196-5200.	9.1	76
42	Pressureâ€Driven Assembly of Spherical Nanoparticles and Formation of 1Dâ€Nanostructure Arrays. Angewandte Chemie - International Edition, 2010, 49, 8431-8434.	13.8	78
43	Nanostructured Gold Architectures Formed through High Pressure-Driven Sintering of Spherical Nanoparticle Arrays. Journal of the American Chemical Society, 2010, 132, 12826-12828.	13.7	93
44	Monodisperse porous nanodiscs with fluorescent and crystalline wall structure. Chemical Communications, 2010, 46, 4941.	4.1	31
45	Hydrogen-Bonding-Assisted Self-Assembly: Monodisperse Hollow Nanoparticles Made Easy. Journal of the American Chemical Society, 2009, 131, 13594-13595.	13.7	50
46	Template-Free Synthesis and Characterization of Single-Phase Voided Poly(<i>o</i> -anisidine) and Polyaniline Colloidal Spheres. Chemistry of Materials, 2007, 19, 5773-5778.	6.7	38
47	A Versatile Bottomâ€up Assembly Approach to Colloidal Spheres from Nanocrystals. Angewandte Chemie - International Edition, 2007, 46, 6650-6653.	13.8	310