
SÃindor Damjanovich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11949307/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Membrane Potential Distinctly Modulates Mobility and Signaling of IL-2 and IL-15 Receptors in T Cells. Biophysical Journal, 2018, 114, 2473-2482.	0.5	8
2	MHC I Expression Regulates Co-clustering and Mobility of Interleukin-2 and -15 Receptors in T Cells. Biophysical Journal, 2016, 111, 100-112.	0.5	15
3	Distinct Spatial Relationship of the Interleukinâ€9 Receptor with Interleukinâ€2 Receptor and Major Histocompatibility Complex Glycoproteins in Human T Lymphoma Cells. ChemPhysChem, 2014, 15, 3969-3978.	2.1	10
4	Nonâ€Random Distribution of Interleukin Receptors on the Cell Surface. ChemPhysChem, 2009, 10, 1577-1585.	2.1	11
5	Measurement of Molecular Mobility with Fluorescence Correlation Spectroscopy. Current Protocols in Cytometry, 2009, 50, Unit2.15.	3.7	4
6	Twoâ€sided fluorescence resonance energy transfer for assessing molecular interactions of up to three distinct species in confocal microscopy. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2008, 73A, 209-219.	1.5	37
7	Dissecting interacting molecular populations by FRET. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2008, 73A, 681-684.	1.5	4
8	A biophysical approach to IL-2 and IL-15 receptor function: Localization, conformation and interactions. Immunology Letters, 2008, 116, 117-125.	2.5	40
9	Conformation of the c-Fos/c-Jun Complex In Vivo: A Combined FRET, FCCS, and MD-Modeling Study. Biophysical Journal, 2008, 94, 2859-2868.	0.5	48
10	Nanometer-scale organization of the alpha subunits of the receptors for IL2 and IL15 in human T lymphoma cells. Journal of Cell Science, 2008, 121, 627-633.	2.0	61
11	Principles of Resonance Energy Transfer. Current Protocols in Cytometry, 2006, 38, Unit1.12.	3.7	7
12	ICAM-1 inhibits the homocluster formation of MHC-I in colon carcinoma cells. Biochemical and Biophysical Research Communications, 2006, 347, 758-763.	2.1	7
13	Measuring FRET in Flow Cytometry and Microscopy. Current Protocols in Cytometry, 2006, 38, Unit12.8.	3.7	18
14	The role of supramolecular protein complexes and membrane potential in transmembrane signaling processes of lymphocytes. Immunology Letters, 2006, 104, 53-58.	2.5	7
15	Transmembrane Signals Mediated by IL-2 and IL-15 Control the Life and Death of Lymphocytes. , 2005, , 97-121.		2
16	Detection of receptor trimers on the cell surface by flow cytometric fluorescence energy homotransfer measurements. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1744, 176-198.	4.1	13
17	Novel calibration method for flow cytometric fluorescence resonance energy transfer measurements between visible fluorescent proteins. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2005, 67A, 86-96.	1.5	50
18	Computer program for analyzing donor photobleaching FRET image series. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2005, 67A, 119-128.	1.5	20

SÃindor Damjanovich

#	Article	IF	CITATIONS
19	Nanoparticle energy transfer on the cell surface. Journal of Molecular Recognition, 2005, 18, 236-253.	2.1	19
20	Detection of channel proximity by nanoparticle-assisted delaying of toxin binding; a combined patch-clamp and flow cytometric energy transfer study. European Biophysics Journal, 2005, 34, 127-143.	2.2	5
21	Non-Random Patterns of Membrane Proteins and Their Roles in Transmembrane Signaling. , 2005, , 71-95.		2
22	IL-2 and IL-15 receptor Â-subunits are coexpressed in a supramolecular receptor cluster in lipid rafts of T cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11082-11087.	7.1	114
23	Computer program for determining fluorescence resonance energy transfer efficiency from flow cytometric data on a cell-by-cell basis. Computer Methods and Programs in Biomedicine, 2004, 75, 201-211.	4.7	56
24	Membrane topography of HLA I, HLA II, and ICAM-1 is affected by IFN-Î ³ in lipid rafts of uveal melanomas. Biochemical and Biophysical Research Communications, 2004, 322, 678-683.	2.1	23
25	An Alternative to Conventional Immunosuppression: Small-Molecule Inhibitors of Kv1.3 Channels. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2004, 4, 250-254.	3.4	14
26	Exploring Membrane Microdomains and Functional Protein Clustering in Live Cells with Flow and Image Cytometric Methods. , 2004, , 99-120.		1
27	Signal transduction in T lymphocytes and aging. Experimental Gerontology, 2003, 38, 231-236.	2.8	7
28	Class I HLA oligomerization at the surface of B cells is controlled by exogenous beta2-microglobulin: implications in activation of cytotoxic T lymphocytes. International Immunology, 2003, 15, 331-339.	4.0	59
29	INF-γ Rearranges Membrane Topography of MHC-I and ICAM-1 in Colon Carcinoma Cells. Biochemical and Biophysical Research Communications, 2002, 290, 635-640.	2.1	46
30	OLIGOMERIZATION OF IL-2Rα. Cytokine, 2002, 17, 82-90.	3.2	19
31	Lipid rafts and the local density of ErbB proteins influence the biological role of homo- and heteroassociations of ErbB2. Journal of Cell Science, 2002, 115, 4251-4262.	2.0	167
32	Applications of fluorescence resonance energy transfer for mapping biological membranes. Reviews in Molecular Biotechnology, 2002, 82, 251-266.	2.8	27
33	GPI-microdomains (membrane rafts) and signaling of the multi-chain interleukin-2 receptor in human lymphoma/leukemia T cell lines. FEBS Journal, 2002, 269, 1199-1208.	0.2	78
34	Does mosaicism of the plasma membrane at molecular and higher hierarchical levels in human lymphocytes carry information on the immediate history of cells?. Immunology Letters, 2002, 82, 93-99.	2.5	13
35	Multiple Binding Sites for Melatonin on Kv1.3. Biophysical Journal, 2001, 80, 1280-1297.	0.5	17
36	Organization of the glycoprotein (GP) IIb/IIIa heterodimer on resting human platelets studied by flow cytometric energy transfer. Journal of Photochemistry and Photobiology B: Biology, 2001, 65, 47-58.	3.8	6

#	Article	IF	CITATIONS
37	Lipopolysaccharide and ceramide docking to CD14 provokes ligand-specific receptor clustering in rafts. European Journal of Immunology, 2001, 31, 3153-3164.	2.9	408
38	N-Alkane uptake and utilisation by Streptomyces strains. Antonie Van Leeuwenhoek, 2001, 79, 269-276.	1.7	45
39	Clustering of Class I HLA Oligomers with CD8 and TCR: Three-Dimensional Models Based on Fluorescence Resonance Energy Transfer and Crystallographic Data. Journal of Immunology, 2001, 166, 5078-5086.	0.8	41
40	The CD45 tyrosine phosphatase regulates Campath-1H (CD52)-induced TCR-dependent signal transduction in human T cells. International Immunology, 2000, 12, 505-516.	4.0	33
41	Blockage of Human T Lymphocyte Kv1.3 Channels by Pi1, a Novel Class of Scorpion Toxin. Biochemical and Biophysical Research Communications, 2000, 278, 34-37.	2.1	25
42	Two-dimensional receptor patterns in the plasma membrane of cells. A critical evaluation of their identification, origin and information content. Biophysical Chemistry, 1999, 82, 99-108.	2.8	27
43	Complexity of signal transduction mediated by ErbB2: Clues to the potential of receptor-targeted cancer therapy. Pathology and Oncology Research, 1999, 5, 255-271.	1.9	50
44	Principles of Resonance Energy Transfer. Current Protocols in Cytometry, 1999, 9, 1.12.1.	3.7	2
45	EGF-induced redistribution of erbB2 on breast tumor cells: Flow and image cytometric energy transfer measurements. , 1998, 32, 120-131.		48
46	Application of fluorescence resonance energy transfer in the clinical laboratory: Routine and research. , 1998, 34, 159-179.		187
47	Pandinus imperatorScorpion Venom Blocks Voltage-Gated K+Channels in Human Lymphocytes. Biochemical and Biophysical Research Communications, 1998, 242, 621-625.	2.1	21
48	Application of fluorescence resonance energy transfer in the clinical laboratory: Routine and research. Cytometry, 1998, 34, 159-179.	1.8	3
49	Flow Cytometric Membrane Potential Measurements. , 1998, , 348-357.		1
50	Significance of Ion Channels and Membrane Potential Changes in Cells. , 1998, , 43-51.		0
51	Major histocompatibility complex class I protein conformation altered by transmembrane potential changes. , 1997, 27, 353-357.		21
52	The Effect of Juglone on the Membrane Potential and Whole-Cell K+Currents of Human Lymphocytes. Biochemical and Biophysical Research Communications, 1996, 218, 828-832.	2.1	30
53	Immunosuppressors Inhibit Voltage-Gated Potassium Channels in Human Peripheral Blood Lymphocytes. Biochemical and Biophysical Research Communications, 1996, 221, 254-258.	2.1	22
54	Effect of Acetylcholine on the Electrophysiology and Proliferative Response of Human Lymphocytes. Biochemical and Biophysical Research Communications, 1996, 226, 303-308.	2.1	7

#	Article	IF	CITATIONS
55	Changes in membrane potential of target cells promotes cytotoxic activity of effector T lymphocytes. Immunology Letters, 1996, 51, 175-180.	2.5	7
56	Modification of membrane cholesterol level affects expression and clustering of class I HLA molecules at the surface of JY human lymphoblasts. Immunology Letters, 1996, 54, 221-226.	2.5	29
5 7	A photobleaching energy transfer analysis of CD8MHC-I and LFA-1ICAM-1 interactions in CTL-target cell conjugates. Immunology Letters, 1996, 54, 151-156.	2.5	28
58	Plasma-membrane-Bound mcromoleculas are dynamically aggregated to form non-random codistribution patterns of selected functional elements. Do pattern recognition processes govern antigen presentation and intercellular interactions?. Journal of Molecular Recognition, 1995, 8, 237-246.	2.1	8
59	Distinct association of transferrin receptor with HLA class I molecules on HUT-102B and JY cells. Immunology Letters, 1995, 44, 203-208.	2.5	27
60	Lateral organization of the ICAM-1 molecule at the surface of human lymphoblasts: A possible model for its co-distribution with the IL-2 receptor, class I and class II HLA molecules. European Journal of Immunology, 1994, 24, 2115-2123.	2.9	68
61	Mapping of cell surface protein-patterns by combined fluorescence anisotropy and energy transfer measurements. Journal of Photochemistry and Photobiology B: Biology, 1993, 19, 69-73.	3.8	25
62	A sodium channel opener inhibits stimulation of human peripheral blood mononuclear cells. Molecular Immunology, 1992, 29, 517-524.	2.2	8
63	Dynamic Physical Interactions of Plasma Membrane Molecules Generate Cell Surface Patterns and Regulate Cell Activation Processes. Immunobiology, 1992, 185, 337-349.	1.9	13
64	The Response of Human Lymphocytes to Phytohemagglutinin Is Impaired at Different Levels during Aging. Annals of the New York Academy of Sciences, 1992, 673, 110-119.	3.8	6
65	Ion Channel Activity and Transmembrane Signaling in Lymphocytes. Annals of the New York Academy of Sciences, 1992, 650, 205-210.	3.8	4
66	Bretylium-induced voltage-gated sodium current in human lymphocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 1992, 1137, 143-147.	4.1	12
67	Transmembrane signalling in T cells. Trends in Immunology, 1992, 13, A12-A15.	7.5	19
68	Parameters to monitor aging with a possible perspective for intervention — an immunological approach. Archives of Gerontology and Geriatrics, 1991, 12, 231-238.	3.0	1
69	Electroimmunology: Membrane Potential, Ion-Channel Activities, and Stimdatory Signal Transduction in Human T Lymphocytes horn Young and Elderly. Annals of the New York Academy of Sciences, 1991, 621, 29-39.	3.8	14
70	Dynamic Behavior of Cell Surface Receptors as Revealed by Laser Excited Fluorescence Spectroscopy. , 1991, , 383-391.		0
71	Mobility of HLA Class I antigen influenced by anti-CD-4 monoclonal antibody in lymphocyte membranes: a flow cytometric energy transfer, fluorescence photobleaching recovery, and rotational relaxation study. , 1990, , .		0
72	Effect of cyclosporin A on the membrane potential and Ca2+ level of human lymphoid cell lines and mouse thymocytes. Biochimica Et Biophysica Acta - Bioenergetics, 1990, 1019, 159-165.	1.0	20

SÃindor Damjanovich

#	Article	IF	CITATIONS
73	Voltage gating of Ca2+-activated potassium channels in human lymphocytes. Biochemical and Biophysical Research Communications, 1990, 171, 325-329.	2.1	10
74	Bretylium causes a K+-Na+ pump activation that is independent of Na+H+ exchange in depolarized rat, mouse and human lymphocytes. Molecular Immunology, 1990, 27, 1307-1311.	2.2	17
75	Fluorescent staphylococci as microbeads. Cytometry, 1989, 10, 801-802.	1.8	4
76	Ligand and voltage gated sodium channels may regulate electrogenic pump activity in human, mouse and rat lymphocytes. Biochemical and Biophysical Research Communications, 1989, 160, 999-1002.	2.1	26
77	Protein dynamics and function. Journal of Molecular Catalysis, 1988, 47, 155-163.	1.2	3
78	Protein dynamics and fluorescence quenching. Journal of Molecular Catalysis, 1988, 47, 165-177.	1.2	1
79	Luminescence spectroscopic approaches in studying cell surface dynamics. Quarterly Reviews of Biophysics, 1988, 21, 479-544.	5.7	49
80	Fluorescence energy transfer and membrane potential measurements monitor dynamic properties of cell membranes: A critical review. Progress in Biophysics and Molecular Biology, 1987, 49, 65-87.	2.9	70
81	Flow cytometric measurements of fluorescence energy transfer using single laser excitation. Cytometry, 1987, 8, 120-128.	1.8	68
82	Cyclosporin depolarizes human lymphocytes: earliest observed effect on cell metabolism. European Journal of Immunology, 1987, 17, 763-768.	2.9	53
83	Accessibility of cell surface thiols in human lymphocytes is altered by ionophores or OKT-3 antibody. Biochemical and Biophysical Research Communications, 1986, 140, 999-1006.	2.1	21
84	Cyclosporin A depolarizes cytoplasmic membrane potential and interacts with Ca2+ ionophores. Biochimica Et Biophysica Acta - Molecular Cell Research, 1986, 886, 353-360.	4.1	34
85	Cytoplasmic membrane potential of mouse lymphocytes is decreased by cyclosporins. Molecular Immunology, 1986, 23, 175-180.	2.2	28
86	The dynamic basis of energy transduction in enzymes. Biochimica Et Biophysica Acta - Reviews on Bioenergetics, 1984, 768, 81-112.	0.2	83
87	Fluorescence energy transfer measurements on cell surfaces: A critical comparison of steady-state fluorimetric and flow cytometric methods. Cytometry, 1984, 5, 210-216.	1.8	129
88	The role of protein fluctuations in enzyme action: A review. Progress in Biophysics and Molecular Biology, 1982, 39, 109-146.	2.9	172
89	Correlation between activity and dynamics of the protein matrix of phosphorylase b. Biochemistry, 1980, 19, 5782-5786.	2.5	27
90	Effect of glycerol on some kinetic parameters of phosphorylase b. Biochimica Et Biophysica Acta - Biomembranes, 1972, 284, 345-348.	2.6	21

#	Article	IF	CITATIONS
91	Studies on the SH groups of phosphorylase b Reaction with 5,5′-dithiobis-(2-nitrobenzoic acid). Biochimica Et Biophysica Acta - Biomembranes, 1969, 185, 88-102.	2.6	30
92	The reactivity of SH groups in phosphorylase. Biochimica Et Biophysica Acta: BBA Enzymology and Biological Oxidation, 1966, 122, 145-147.	1.6	31
93	The role of -SH groups in the enzymic activity of phosphorylase-b. Archives of Biochemistry and Biophysics, 1965, 112, 471-475.	3.0	23