List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11948588/publications.pdf Version: 2024-02-01

		8755	20358
226	16,425	75	116
papers	citations	h-index	g-index
228	228	228	13681
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mitochondrial transport and metabolism of the vitamin Bâ€derived cofactors thiamine pyrophosphate, coenzyme A, <scp>FAD</scp> and <scp>NAD</scp> ⁺ , and related diseases: A review. IUBMB Life, 2022, 74, 592-617.	3.4	19
2	Evidence for Non-Essential Salt Bridges in the M-Gates of Mitochondrial Carrier Proteins. International Journal of Molecular Sciences, 2022, 23, 5060.	4.1	6
3	Mitochondrial transport and metabolism of the major methyl donor and versatile cofactor Sâ€adenosylmethionine, and related diseases: A review ^{â€} . IUBMB Life, 2022, 74, 573-591.	3.4	7
4	Engineering Yarrowia lipolytica for the selective and high-level production of isocitric acid through manipulation of mitochondrial dicarboxylate–tricarboxylate carriers. Metabolic Engineering, 2021, 65, 156-166.	7.0	20
5	Energy Metabolism Mitochondrial Transporters of the Solute Carrier 25 (SLC25) Superfamily. , 2021, , 213-243.		2
6	The Mitochondrial Carnitine Acyl-carnitine Carrier (SLC25A20): Molecular Mechanisms of Transport, Role in Redox Sensing and Interaction with Drugs. Biomolecules, 2021, 11, 521.	4.0	27
7	Welcome to the Family: Identification of the NAD+ Transporter of Animal Mitochondria as Member of the Solute Carrier Family SLC25. Biomolecules, 2021, 11, 880.	4.0	18
8	Uridine Treatment of the First Known Case of SLC25A36 Deficiency. International Journal of Molecular Sciences, 2021, 22, 9929.	4.1	3
9	The physiological role of mitochondrial ADNT1 carrier during senescence in Arabidopsis. Plant Stress, 2021, 2, 100019.	5.5	1
10	Downregulation of a Mitochondrial NAD+ Transporter (NDT2) Alters Seed Production and Germination in Arabidopsis. Plant and Cell Physiology, 2020, 61, 897-908.	3.1	19
11	Diseases Caused by Mutations in Mitochondrial Carrier Genes SLC25: A Review. Biomolecules, 2020, 10, 655.	4.0	70
12	Biochemical and functional characterization of a mitochondrial citrate carrier in <i>Arabidopsis thaliana</i> . Biochemical Journal, 2020, 477, 1759-1777.	3.7	13
13	The mitochondrial <scp>NAD</scp> ⁺ transporter (<scp>NDT</scp> 1) plays important roles in cellular <scp>NAD</scp> ⁺ homeostasis in <i>Arabidopsis thaliana</i> . Plant Journal, 2019, 100, 487-504.	5.7	34
14	The human uncoupling proteins 5 and 6 (UCP5/SLC25A14 and UCP6/SLC25A30) transport sulfur oxyanions, phosphate and dicarboxylates. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 724-733.	1.0	35
15	Deficiency of Mitochondrial Aspartate-Glutamate Carrier 1 Leads to Oligodendrocyte Precursor Cell Proliferation Defects Both In Vitro and In Vivo. International Journal of Molecular Sciences, 2019, 20, 4486.	4.1	10
16	Mitochondrial Carriers for Aspartate, Glutamate and Other Amino Acids: A Review. International Journal of Molecular Sciences, 2019, 20, 4456.	4.1	40
17	The mitochondrial citrate carrier in Yarrowia lipolytica: Its identification, characterization and functional significance for the production of citric acid. Metabolic Engineering, 2019, 54, 264-274.	7.0	48
18	Transcriptional Regulation Factors of the Human Mitochondrial Aspartate/Glutamate Carrier Gene, Isoform 2 (SLC25A13): USF1 as Basal Factor and FOXA2 as Activator in Liver Cells. International Journal of Molecular Sciences. 2019. 20. 1888.	4.1	20

#	Article	IF	CITATIONS
19	Epigenetic upregulation and functional role of the mitochondrial aspartate/glutamate carrier isoform 1 in hepatocellular carcinoma. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 38-47.	3.8	42
20	Uncoupling proteins 1 and 2 (UCP1 and UCP2) from Arabidopsis thaliana are mitochondrial transporters of aspartate, glutamate, and dicarboxylates. Journal of Biological Chemistry, 2018, 293, 4213-4227.	3.4	81
21	SLC25A10 biallelic mutations in intractable epileptic encephalopathy with complex I deficiency. Human Molecular Genetics, 2018, 27, 499-504.	2.9	37
22	In Saccharomyces cerevisiae grown in synthetic minimal medium supplemented with non-fermentable carbon sources glutamate is synthesized within mitochondria. Rendiconti Lincei, 2018, 29, 483-490.	2.2	6
23	An overview of combined Dâ€2―and Lâ€2â€hydroxyglutaric aciduria: functional analysis of CIC variants. Journal of Inherited Metabolic Disease, 2018, 41, 169-180.	3.6	24
24	Mimivirus-Encoded Nucleotide Translocator VMC1 Targets the Mitochondrial Inner Membrane. Journal of Molecular Biology, 2018, 430, 5233-5245.	4.2	6
25	Molecular identification and functional characterization of a novel glutamate transporter in yeast and plant mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 1249-1258.	1.0	39
26	<i><scp>SLC</scp>25A26</i> overexpression impairs cell function via mt <scp>DNA</scp> hypermethylation and rewiring of methyl metabolism. FEBS Journal, 2017, 284, 967-984.	4.7	33
27	Down-regulation of the mitochondrial aspartate-glutamate carrier isoform 1 AGC1 inhibits proliferation and N-acetylaspartate synthesis in Neuro2A cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1422-1435.	3.8	22
28	Novel Hypoglycemia Phenotype in Congenital Hyperinsulinism Due to Dominant Mutations of Uncoupling Protein 2. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 942-949.	3.6	36
29	Mitochondrial ATP-Mg/phosphate carriers transport divalent inorganic cations in complex with ATP. Journal of Bioenergetics and Biomembranes, 2017, 49, 369-380.	2.3	13
30	Mitochondrial carriers in inflammation induced by bacterial endotoxin and cytokines. Biological Chemistry, 2017, 398, 303-317.	2.5	13
31	Inhibition of the Mitochondrial Glutamate Carrier SLC25A22 in Astrocytes Leads to Intracellular Glutamate Accumulation. Frontiers in Cellular Neuroscience, 2017, 11, 149.	3.7	44
32	Dataset of the AAC2 conformations in the c-, intermediate- and m-states obtained from free-energy simulations. Data in Brief, 2016, 7, 1355-1357.	1.0	0
33	The switching mechanism of the mitochondrial ADP/ATP carrier explored by free-energy landscapes. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 772-781.	1.0	44
34	Discoveries, metabolic roles and diseases of mitochondrial carriers: A review. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2362-2378.	4.1	179
35	Asymmetric dimethylarginine is transported by the mitochondrial carrier SLC25A2. Amino Acids, 2016, 48, 427-436.	2.7	19
36	Mitochondrial transporters for ornithine and related amino acids: a review. Amino Acids, 2015, 47, 1763-1777.	2.7	30

#	Article	IF	CITATIONS
37	Functional characterization and organ distribution of three mitochondrial ATP–Mg/Pi carriers in Arabidopsis thaliana. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1220-1230.	1.0	33
38	Acetylation of human mitochondrial citrate carrier modulates mitochondrial citrate/malate exchange activity to sustain NADPH production during macrophage activation. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 729-738.	1.0	79
39	Pathogenic potential of SLC25A15 mutations assessed by transport assays and complementation of Saccharomyces cerevisiae ORT1 null mutant. Molecular Genetics and Metabolism, 2015, 115, 27-32.	1.1	22
40	The mitochondrial aspartate/glutamate carrier isoform 1 gene expression is regulated by CREB in neuronal cells. International Journal of Biochemistry and Cell Biology, 2015, 60, 157-166.	2.8	21
41	Subcellular Distribution of NAD+ between Cytosol and Mitochondria Determines the Metabolic Profile of Human Cells. Journal of Biological Chemistry, 2015, 290, 27644-27659.	3.4	58
42	Intra-mitochondrial Methylation Deficiency Due to Mutations in SLC25A26. American Journal of Human Genetics, 2015, 97, 761-768.	6.2	58
43	The Human SLC25A33 and SLC25A36 Genes of Solute Carrier Family 25 Encode Two Mitochondrial Pyrimidine Nucleotide Transporters. Journal of Biological Chemistry, 2014, 289, 33137-33148.	3.4	85
44	The Saccharomyces cerevisiae gene YPRO11c encodes a mitochondrial transporter of adenosine 5′-phosphosulfate and 3′-phospho-adenosine 5′-phosphosulfate. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 326-334.	1.0	22
45	Single-nucleotide evolution quantifies the importance of each site along the structure of mitochondrial carriers. Cellular and Molecular Life Sciences, 2014, 71, 349-364.	5.4	59
46	The Human Gene SLC25A29, of Solute Carrier Family 25, Encodes a Mitochondrial Transporter of Basic Amino Acids. Journal of Biological Chemistry, 2014, 289, 13374-13384.	3.4	72
47	Mitochondrial transporters of the SLC25 family and associated diseases: a review. Journal of Inherited Metabolic Disease, 2014, 37, 565-575.	3.6	169
48	AGC1 Deficiency Causes Infantile Epilepsy, Abnormal Myelination, and Reduced N-Acetylaspartate. JIMD Reports, 2014, 14, 77-85.	1.5	57
49	Identification of Amino Acid Residues Underlying the Antiport Mechanism of the Mitochondrial Carnitine/Acylcarnitine Carrier by Site-Directed Mutagenesis and Chemical Labeling. Biochemistry, 2014, 53, 6924-6933.	2.5	13
50	Antiporters of the Mitochondrial Carrier Family. Current Topics in Membranes, 2014, 73, 289-320.	0.9	62
51	A novel mutation in the SLC25A12 gene causing mitochondrial aspartate/glutamate carrier 1 (AGC1) deficiency. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, e74.	1.0	0
52	Quantifying the importance of each site along the structure of mitochondrial carriers by monitoring single-nucleotide evolution. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, e113-e114.	1.0	0
53	A key role of the mitochondrial citrate carrier (SLC25A1) in TNFα- and IFNγ-triggered inflammation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1217-1225.	1.9	145
54	UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 960-965.	7.1	322

#	Article	IF	CITATIONS
55	A novel mutation in the SLC25A15 gene in a Turkish patient with HHH syndrome: Functional analysis of the mutant protein. Molecular Genetics and Metabolism, 2014, 112, 25-29.	1.1	25
56	SLC25A1, or CIC, is a novel transcriptional target of mutant p53 and a negative tumor prognostic marker. Oncotarget, 2014, 5, 1212-1225.	1.8	68
57	Glutathione controls the redox state of the mitochondrial carnitine/acylcarnitine carrier Cys residues by glutathionylation. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 5299-5304.	2.4	37
58	The substrate specificity of mitochondrial carriers: Mutagenesis revisited. Molecular Membrane Biology, 2013, 30, 149-159.	2.0	21
59	ATP-citrate lyase is essential for macrophage inflammatory response. Biochemical and Biophysical Research Communications, 2013, 440, 105-111.	2.1	191
60	The mitochondrial transporter family SLC25: Identification, properties and physiopathology. Molecular Aspects of Medicine, 2013, 34, 465-484.	6.4	492
61	<i>SLC25A22</i> is a novel gene for migrating partial seizures in infancy. Annals of Neurology, 2013, 74, 873-882.	5.3	102
62	Transcriptional Regulation of the Mitochondrial Citrate and Carnitine/Acylcarnitine Transporters: Two Genes Involved in Fatty Acid Biosynthesis and β-oxidation. Biology, 2013, 2, 284-303.	2.8	17
63	Identification of Mitochondrial Coenzyme A Transporters from Maize and Arabidopsis Â. Plant Physiology, 2013, 162, 581-588.	4.8	31
64	Changes in Mitochondrial Carriers Exhibit Stress-Specific Signatures in INS-1Eβ-Cells Exposed to Glucose Versus Fatty Acids. PLoS ONE, 2013, 8, e82364.	2.5	21
65	The human gene <i>SLC25A17</i> encodes a peroxisomal transporter of coenzyme A, FAD and NAD+. Biochemical Journal, 2012, 443, 241-247.	3.7	125
66	Substrate Specificity of the Two Mitochondrial Ornithine Carriers Can Be Swapped by Single Mutation in Substrate Binding Site. Journal of Biological Chemistry, 2012, 287, 7925-7934.	3.4	47
67	Legionella pneumophila Secretes a Mitochondrial Carrier Protein during Infection. PLoS Pathogens, 2012, 8, e1002459.	4.7	64
68	The peroxisomal NAD+ carrier of Arabidopsis thaliana transports coenzyme A and its derivatives. Journal of Bioenergetics and Biomembranes, 2012, 44, 333-340.	2.3	67
69	Identification of mitochondrial thiamin diphosphate carriers from Arabidopsis and maize. Functional and Integrative Genomics, 2012, 12, 317-326.	3.5	37
70	Identification by site-directed mutagenesis of a hydrophobic binding site of the mitochondrial carnitine/acylcarnitine carrier involved in the interaction with acyl groups. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 697-704.	1.0	25
71	The mitochondrial citrate transporter, CIC, is essential for mitochondrial homeostasis. Oncotarget, 2012, 3, 1220-1235.	1.8	160
72	Role of FOXA and Sp1 in mitochondrial acylcarnitine carrier gene expression in different cell lines. Biochemical and Biophysical Research Communications, 2011, 404, 376-381.	2.1	15

#	Article	IF	CITATIONS
73	The mitochondrial carnitine/acylcarnitine carrier: Function, structure and physiopathology. Molecular Aspects of Medicine, 2011, 32, 223-233.	6.4	194
74	A new Caucasian case of neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD): A clinical, molecular, and functional study. Molecular Genetics and Metabolism, 2011, 104, 501-506.	1.1	32
75	The mitochondrial citrate carrier: a new player in inflammation. Biochemical Journal, 2011, 438, 433-436.	3.7	302
76	Evolution, structure and function of mitochondrial carriers: a review with new insights. Plant Journal, 2011, 66, 161-181.	5.7	212
77	Functional and structural role of amino acid residues in the matrix α-helices, termini and cytosolic loops of the bovine mitochondrial oxoglutarate carrier. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 302-310.	1.0	30
78	Site-directed mutagenesis of charged amino acids of the human mitochondrial carnitine/acylcarnitine carrier: Insight into the molecular mechanism of transport. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 839-845.	1.0	37
79	Structure and function of mitochondrial carriers – Role of the transmembrane helix P and G residues in the gating and transport mechanism. FEBS Letters, 2010, 584, 1931-1939.	2.8	106
80	The biochemical properties of the mitochondrial thiamine pyrophosphate carrier from <i>Drosophilaâ€∫melanogaster</i> . FEBS Journal, 2010, 277, 1172-1181.	4.7	34
81	MTCH2/MIMP is a major facilitator of tBID recruitment to mitochondria. Nature Cell Biology, 2010, 12, 553-562.	10.3	154
82	Identification and Functional Characterization of a Novel Mitochondrial Carrier for Citrate and Oxoglutarate in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2010, 285, 17359-17370.	3.4	107
83	Mitochondrial metabolite transport. Essays in Biochemistry, 2010, 47, 37-52.	4.7	161
84	Molecular Identification and Functional Characterization of Arabidopsis thaliana Mitochondrial and Chloroplastic NAD+ Carrier Proteins. Journal of Biological Chemistry, 2009, 284, 31249-31259.	3.4	151
85	A Novel Member of Solute Carrier Family 25 (SLC25A42) Is a Transporter of Coenzyme A and Adenosine 3′,5′-Diphosphate in Human Mitochondria. Journal of Biological Chemistry, 2009, 284, 18152-18159.	3.4	134
86	Mitochondrial Glutamate Carrier GC1 as a Newly Identified Player in the Control of Glucose-stimulated Insulin Secretion. Journal of Biological Chemistry, 2009, 284, 25004-25014.	3.4	59
87	Site-directed mutagenesis of the His residues of the rat mitochondrial carnitine/acylcarnitine carrier: Implications for the role of His-29 in the transport pathway. Biochimica Et Biophysica Acta - Bioenergetics, 2009, 1787, 1009-1015.	1.0	18
88	Identification of novel mutations in the <i>SLC25A15</i> gene in hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome: A clinical, molecular, and functional study. Human Mutation, 2009, 30, 741-748.	2.5	57
89	Abundant expression and purification of biologically active mitochondrial citrate carrier in baculovirus-infected insect cells. Journal of Bioenergetics and Biomembranes, 2009, 41, 289-297.	2.3	17
90	Role of FOXA in mitochondrial citrate carrier gene expression and insulin secretion. Biochemical and Biophysical Research Communications, 2009, 385, 220-224.	2.1	32

#	Article	IF	CITATIONS
91	Transcription of the mitochondrial citrate carrier gene: Identification of a silencer and its binding protein ZNF224. Biochemical and Biophysical Research Communications, 2009, 386, 186-191.	2.1	26
92	Statins, fibrates and retinoic acid upregulate mitochondrial acylcarnitine carrier gene expression. Biochemical and Biophysical Research Communications, 2009, 388, 643-647.	2.1	39
93	AGC1 Deficiency Associated with Global Cerebral Hypomyelination. New England Journal of Medicine, 2009, 361, 489-495.	27.0	144
94	Mitochondrial carrier protein biogenesis: role of the chaperones Hsc70 and Hsp90. Biochemical Journal, 2009, 419, 369-375.	3.7	55
95	Interaction of β-lactam antibiotics with the mitochondrial carnitine/acylcarnitine transporter. Chemico-Biological Interactions, 2008, 173, 187-194.	4.0	42
96	Diseases caused by defects of mitochondrial carriers: A review. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 564-578.	1.0	193
97	Epigenetic mechanisms and Sp1 regulate mitochondrial citrate carrier gene expression. Biochemical and Biophysical Research Communications, 2008, 376, 15-20.	2.1	32
98	α-Isopropylmalate, a Leucine Biosynthesis Intermediate in Yeast, Is Transported by the Mitochondrial Oxalacetate Carrier. Journal of Biological Chemistry, 2008, 283, 28445-28453.	3.4	71
99	Peroxisomes as Novel Players in Cell Calcium Homeostasis. Journal of Biological Chemistry, 2008, 283, 15300-15308.	3.4	49
100	Functional characterization of residues within the carnitine/acylcarnitine translocase RX ₂ PANAAXF distinct motif. Molecular Membrane Biology, 2008, 25, 152-163.	2.0	25
101	Identification and Characterization of ADNT1, a Novel Mitochondrial Adenine Nucleotide Transporter from Arabidopsis. Plant Physiology, 2008, 148, 1797-1808.	4.8	64
102	Molecular identification of three <i>Arabidopsis thaliana</i> mitochondrial dicarboxylate carrier isoforms: organ distribution, bacterial expression, reconstitution into liposomes and functional characterization. Biochemical Journal, 2008, 410, 621-629.	3.7	122
103	Biogenesis of yeast dicarboxylate carrier: the carrier signature facilitates translocation across the mitochondrial outer membrane. Journal of Cell Science, 2007, 120, 4099-4106.	2.0	12
104	The Insulin-like Growth Factor-I–mTOR Signaling Pathway Induces the Mitochondrial Pyrimidine Nucleotide Carrier to Promote Cell Growth. Molecular Biology of the Cell, 2007, 18, 3545-3555.	2.1	107
105	Transcription of the mitochondrial citrate carrier gene: Role of SREBP-1, upregulation by insulin and downregulation by PUFA. Biochemical and Biophysical Research Communications, 2007, 356, 249-254.	2.1	59
106	Biogenesis of Eel Liver Citrate Carrier (CIC): Negative Charges Can Substitute for Positive Charges in the Presequence. Journal of Molecular Biology, 2007, 365, 958-967.	4.2	23
107	Functional and Structural Role of Amino Acid Residues in the Odd-numbered Transmembrane α-Helices of the Bovine Mitochondrial Oxoglutarate Carrier. Journal of Molecular Biology, 2007, 369, 400-412.	4.2	59
108	Conformation-dependent accessibility of Cys-136 and Cys-155 of the mitochondrial rat carnitine/acylcarnitine carrier to membrane-impermeable SH reagents. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 1331-1339.	1.0	22

#	Article	IF	CITATIONS
109	Arabidopsis mitochondria have two basic amino acid transporters with partially overlapping specificities and differential expression in seedling development. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 1277-1283.	1.0	45
110	Identification of mitochondrial carriers in Saccharomyces cerevisiae by transport assay of reconstituted recombinant proteins. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 1249-1262.	1.0	147
111	Functional and Structural Role of Amino Acid Residues in the Even-numbered Transmembrane α-Helices of the Bovine Mitochondrial Oxoglutarate Carrier. Journal of Molecular Biology, 2006, 363, 51-62.	4.2	54
112	Identification of a mitochondrial transporter for pyrimidine nucleotides in Saccharomyces cerevisiae: bacterial expression, reconstitution and functional characterization. Biochemical Journal, 2006, 393, 441-446.	3.7	77
113	Cytopathic effects of the cytomegalovirus-encoded apoptosis inhibitory protein vMIA. Journal of Cell Biology, 2006, 174, 985-996.	5.2	90
114	Molecular Identification of an Arabidopsis S-Adenosylmethionine Transporter. Analysis of Organ Distribution, Bacterial Expression, Reconstitution into Liposomes, and Functional Characterization. Plant Physiology, 2006, 142, 855-865.	4.8	110
115	The Mitochondrial Citrate/Isocitrate Carrier Plays a Regulatory Role in Glucose-stimulated Insulin Secretion. Journal of Biological Chemistry, 2006, 281, 35624-35632.	3.4	144
116	Knockout of Slc25a19 causes mitochondrial thiamine pyrophosphate depletion, embryonic lethality, CNS malformations, and anemia. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15927-15932.	7.1	147
117	Identification of the Mitochondrial NAD+ Transporter in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2006, 281, 1524-1531.	3.4	215
118	Heme Oxygenase-1 Enhances Renal Mitochondrial Transport Carriers and Cytochrome c Oxidase Activity in Experimental Diabetes. Journal of Biological Chemistry, 2006, 281, 15687-15693.	3.4	105
119	Transgenic expression of the deoxynucleotide carrier causes mitochondrial damage that is enhanced by NRTIs for AIDS. Laboratory Investigation, 2005, 85, 972-981.	3.7	33
120	Substrate-induced conformational changes of the mitochondrial oxoglutarate carrier: a spectroscopic and molecular modelling study. Molecular Membrane Biology, 2005, 22, 443-452.	2.0	19
121	Solution structure of the fifth and sixth transmembrane segments of the mitochondrial oxoglutarate carrier. Molecular Membrane Biology, 2005, 22, 191-201.	2.0	6
122	Identification by Site-directed Mutagenesis and Chemical Modification of Three Vicinal Cysteine Residues in Rat Mitochondrial Carnitine/Acylcarnitine Transporter. Journal of Biological Chemistry, 2005, 280, 19607-19612.	3.4	49
123	Functional analysis of the promoter of the mitochondrial phosphate carrier human gene: identification of activator and repressor elements and their transcription factors. Biochemical Journal, 2005, 391, 613-621.	3.7	37
124	Impaired Mitochondrial Glutamate Transport in Autosomal Recessive Neonatal Myoclonic Epilepsy. American Journal of Human Genetics, 2005, 76, 334-339.	6.2	149
125	Relationships of Cysteine and Lysine residues with the substrate binding site of the mitochondrial ornithine/citrulline carrier: An inhibition kinetic approach combined with the analysis of the homology structural model. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1718, 53-60.	2.6	26
126	A fourth ADP/ATP carrier isoform in man: identification, bacterial expression, functional characterization and tissue distribution. FEBS Letters, 2005, 579, 633-637.	2.8	198

#	Article	IF	CITATIONS
127	Identification of the Mitochondrial ATP-Mg/Pi Transporter. Journal of Biological Chemistry, 2004, 279, 30722-30730.	3.4	193
128	Identification of the Mitochondrial GTP/GDP Transporter in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2004, 279, 20850-20857.	3.4	110
129	Upregulation of the Mitochondrial Phosphate Carrier During Freezing in the Wood Frog Rana sylvatica: Potential Roles of Transporters in Freeze Tolerance. Journal of Bioenergetics and Biomembranes, 2004, 36, 229-239.	2.3	23
130	The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflugers Archiv European Journal of Physiology, 2004, 447, 689-709.	2.8	655
131	Response to therapy in carnitine/acylcarnitine translocase (CACT) deficiency due to a novel missense mutation. American Journal of Medical Genetics Part A, 2004, 126A, 150-155.	2.4	41
132	Molecular and functional analysis ofSLC25A20 mutations causing carnitine-acylcarnitine translocase deficiency. Human Mutation, 2004, 24, 312-320.	2.5	63
133	Solution structure of the first and second transmembrane segments of the mitochondrial oxoglutarate carrier. Molecular Membrane Biology, 2004, 21, 297-305.	2.0	7
134	The growing family of mitochondrial carriers in Arabidopsis. Trends in Plant Science, 2004, 9, 138-146.	8.8	184
135	The Structure of Rigidoporus lignosus Laccase Containing a Full Complement of Copper Ions, Reveals an Asymmetrical Arrangement for the T3 Copper Pair. Journal of Molecular Biology, 2004, 342, 1519-1531.	4.2	140
136	The yeast peroxisomal adenine nucleotide transporter: characterization of two transport modes and involvement in ΔpH formation across peroxisomal membranes. Biochemical Journal, 2004, 381, 581-585.	3.7	43
137	Plant Mitochondrial Carriers. Advances in Photosynthesis and Respiration, 2004, , 247-275.	1.0	4
138	Identification of a mitochondrial transporter for basic amino acids in Arabidopsis thaliana by functional reconstitution into liposomes and complementation in yeast. Plant Journal, 2003, 33, 1027-1035.	5.7	85
139	The Mitochondrial Oxoglutarate Carrier:Â Structural and Dynamic Properties of Transmembrane Segment IV Studied by Site-Directed Spin Labelingâ€,‡. Biochemistry, 2003, 42, 5493-5499.	2.5	15
140	Biogenesis of Rat Mitochondrial Citrate Carrier (CIC): The N-terminal Presequence Facilitates the Solubility of the Preprotein but does not act as a Targeting Signal. Journal of Molecular Biology, 2003, 325, 399-408.	4.2	31
141	Functional analysis of mutations in the human carnitine/acylcarnitine translocase in Aspergillus nidulans. Fungal Genetics and Biology, 2003, 39, 211-220.	2.1	14
142	Recombinant Expression of the Ca2+-sensitive Aspartate/Glutamate Carrier Increases Mitochondrial ATP Production in Agonist-stimulated Chinese Hamster Ovary Cells. Journal of Biological Chemistry, 2003, 278, 38686-38692.	3.4	138
143	The Mitochondrial Ornithine Transporter. Journal of Biological Chemistry, 2003, 278, 32778-32783.	3.4	117
144	Identification of a Novel Transporter for Dicarboxylates and Tricarboxylates in Plant Mitochondria. Journal of Biological Chemistry, 2002, 277, 24204-24211.	3.4	140

#	Article	IF	CITATIONS
145	Site-Directed Mutagenesis and Chemical Modification of the Six Native Cysteine Residues of the Rat Mitochondrial Carnitine Carrier:  Implications for the Role of Cysteine-136. Biochemistry, 2002, 41, 8649-8656.	2.5	49
146	Identification of the Mitochondrial Glutamate Transporter. Journal of Biological Chemistry, 2002, 277, 19289-19294.	3.4	175
147	Starvation-induced posttranscriptional control of rat liver mitochondrial citrate carrier expression. Biochemical and Biophysical Research Communications, 2002, 299, 418-423.	2.1	26
148	Decreased mitochondrial carnitine translocase in skeletal muscles impairs utilization of fatty acids in insulin-resistant patients. Frontiers in Bioscience - Landmark, 2002, 7, a109-116.	3.0	22
149	Adenine nucleotide translocator 1 deficiency associated with Sengers syndrome. Annals of Neurology, 2002, 52, 95-99.	5.3	75
150	Mutant deoxynucleotide carrier is associated with congenital microcephaly. Nature Genetics, 2002, 32, 175-179.	21.4	141
151	Purification and characterization of the reconstitutively active adenine nucleotide carrier from mitochondria of Jerusalem artichoke (Helianthus tuberosus L.) tubers. Journal of Bioenergetics and Biomembranes, 2002, 34, 465-472.	2.3	14
152	Biogenesis of the dicarboxylate carrier (DIC): translocation across the mitochondrial outer membrane and subsequent release from the TOM channel are membrane potential-independent 1 1Edited by M. Yaniv. Journal of Molecular Biology, 2001, 310, 965-971.	4.2	20
153	Aberrant mRNA Splicing Associated with Coding Region Mutations in Children with Carnitine-Acylcarnitine Translocase Deficiency. Molecular Genetics and Metabolism, 2001, 74, 248-255.	1.1	33
154	Kinetic mechanism of antiports catalyzed by reconstituted ornithine/citrulline carrier from rat liver mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2001, 1503, 303-313.	1.0	15
155	The Mitochondrial Oxoglutarate Carrier:  Cysteine-Scanning Mutagenesis of Transmembrane Domain IV and Sensitivity of Cys Mutants to Sulfhydryl Reagents. Biochemistry, 2001, 40, 15805-15810.	2.5	39
156	Covariance of tricarboxylate carrier activity and lipogenesis in liver of polyunsaturated fatty acid (n-6) fed rats. FEBS Journal, 2001, 268, 5734-5739.	0.2	30
157	Identification and functional reconstitution of the yeast peroxisomal adenine nucleotide transporter. EMBO Journal, 2001, 20, 5049-5059.	7.8	182
158	Identification of the Human Mitochondrial Oxodicarboxylate Carrier. Journal of Biological Chemistry, 2001, 276, 8225-8230.	3.4	103
159	Identification in Saccharomyces cerevisiae of Two Isoforms of a Novel Mitochondrial Transporter for 2-Oxoadipate and 2-Oxoglutarate. Journal of Biological Chemistry, 2001, 276, 1916-1922.	3.4	105
160	Yeast mitochondrial carriers: bacterial expression, biochemical identification and metabolic significance. Journal of Bioenergetics and Biomembranes, 2000, 32, 67-77.	2.3	84
161	Identification and functions of new transporters in yeast mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2000, 1459, 363-369.	1.0	90
162	Purification and Characterization of the Reconstitutively Active Citrate Carrier from Maize Mitochondria1. Plant Physiology, 1999, 120, 841-848.	4.8	34

#	Article	IF	CITATIONS
163	Identification of the Yeast Mitochondrial Transporter for Oxaloacetate and Sulfate. Journal of Biological Chemistry, 1999, 274, 22184-22190.	3.4	99
164	The mitochondrial dicarboxylate carrier is essential for the growth of Saccharomyces cerevisiae on ethanol or acetate as the sole carbon source. Molecular Microbiology, 1999, 31, 569-577.	2.5	88
165	Identification of the mitochondrial carnitine carrier inSaccharomyces cerevisiae. FEBS Letters, 1999, 462, 472-476.	2.8	87
166	The purified and reconstituted ornithine/citrulline carrier from rat liver mitochondria catalyses a second transport mode: ornithine+/H+ exchange. Biochemical Journal, 1999, 341, 705-711.	3.7	21
167	The purified and reconstituted ornithine/citrulline carrier from rat liver mitochondria catalyses a second transport mode: ornithine+/H+ exchange. Biochemical Journal, 1999, 341, 705.	3.7	9
168	Organization and sequence of the gene for the human mitochondrial dicarboxylate carrier: evolution of the carrier family. Biochemical Journal, 1999, 344, 953.	3.7	13
169	Organization and sequence of the gene for the human mitochondrial dicarboxylate carrier: evolution of the carrier family. Biochemical Journal, 1999, 344, 953-960.	3.7	47
170	The Mitochondrial Carrier Protein Family. , 1999, , 489-519.		6
171	Human mitochondrial transmembrane metabolite carriers: tissue distribution and its implication for mitochondrial disorders. Journal of Bioenergetics and Biomembranes, 1998, 30, 277-284.	2.3	76
172	Bacterial Overexpression, Purification, and Reconstitution of the Carnitine/Acylcarnitine Carrier from Rat Liver Mitochondria. Biochemical and Biophysical Research Communications, 1998, 249, 589-594.	2.1	78
173	The Structure and Organization of the Human Carnitine/Acylcarnitine Translocase (CACT) Gene. Biochemical and Biophysical Research Communications, 1998, 252, 770-774.	2.1	48
174	The Sequence, Bacterial Expression, and Functional Reconstitution of the Rat Mitochondrial Dicarboxylate Transporter Cloned via Distant Homologs in Yeast and Caenorhabditis elegans. Journal of Biological Chemistry, 1998, 273, 24754-24759.	3.4	121
175	Expression in Escherichia coli, Functional Characterization, and Tissue Distribution of Isoforms A and B of the Phosphate Carrier from Bovine Mitochondria. Journal of Biological Chemistry, 1998, 273, 22782-22787.	3.4	130
176	Targeting and assembly of the oxoglutarate carrier: general principles for biogenesis of carrier proteins of the mitochondrial inner membrane. Biochemical Journal, 1998, 333, 151-158.	3.7	55
177	Identification and purification of the reconstitutively active glutamine carrier from rat kidney mitochondria. Biochemical Journal, 1998, 333, 285-290.	3.7	48
178	The mitochondrial carnitine carrier protein: cDNA cloning, primary structure and comparison with other mitochondrial transport proteins. Biochemical Journal, 1997, 321, 713-719.	3.7	138
179	The purified and reconstituted ornithine/citrulline carrier from rat liver mitochondria: electrical nature and coupling of the exchange reaction with H+ translocation. Biochemical Journal, 1997, 327, 349-356.	3.7	54
180	Organization and Sequence of the Human Gene for the Mitochondrial Citrate Transport Protein. DNA Sequence, 1997, 7, 127-139.	0.7	31

#	Article	IF	CITATIONS
181	Identification of the yeast ARG-11 gene as a mitochondrial ornithine carrier involved in arginine biosynthesis. FEBS Letters, 1997, 410, 447-451.	2.8	87
182	Identification of the yeast ACR1 gene product as a succinate-fumarate transporter essential for growth on ethanol or acetate. FEBS Letters, 1997, 417, 114-118.	2.8	130
183	Cloning of the Human Carnitine-Acylcarnitine Carrier cDNA and Identification of the Molecular Defect in a Patient. American Journal of Human Genetics, 1997, 61, 1239-1245.	6.2	136
184	The Mitochondrial Oxoglutarate Carrier:Â Sulfhydryl Reagents Bind to Cysteine-184, and This Interaction Is Enhanced by Substrate Bindingâ€. Biochemistry, 1996, 35, 8974-8980.	2.5	40
185	Cloning and sequencing of the bovine cDNA encoding the mitochondrial tricarboxylate carrier protein. Biochimica Et Biophysica Acta - Biomembranes, 1996, 1284, 9-12.	2.6	16
186	Identification by bacterial expression and functional reconstitution of the yeast genomic sequence encoding the mitochondrial dicarboxylate carrier protein. FEBS Letters, 1996, 399, 299-302.	2.8	105
187	The role of sterols in the functional reconstitution of water-soluble mitochondrial porins from plants. Journal of Bioenergetics and Biomembranes, 1996, 28, 181-189.	2.3	10
188	Probing the Active Site of the Reconstituted Carnitine Carrier from Rat Liver Mitochondria with Sulfhydryl Reagents. A Cysteine Residue is Localized in or Near the Substrate Binding Site. FEBS Journal, 1995, 228, 271-278.	0.2	0
189	Chromosomal Localization of the Mitochondrial Phosphate Carrier Gene PHC to 12q23. Genomics, 1995, 29, 814-815.	2.9	9
190	[25] Mitochondrial metabolite carrier proteins: Purification, reconstitution, and transport studies. Methods in Enzymology, 1995, 260, 349-369.	1.0	226
191	Probing the Active Site of the Reconstituted Carnitine Carrier from Rat Liver Mitochondria with Sulfhydryl Reagents. A Cysteine Residue is Localized in or Near the Substrate Binding Site. FEBS Journal, 1995, 228, 271-278.	0.2	28
192	Kinetic characterization of the reconstituted ornithine carrier from rat liver mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1188, 293-301.	1.0	39
193	The reconstituted carnitine carrier from rat liver mitochondria: evidence for a transport mechanism different from that of the other mitochondrial translocators. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1189, 65-73.	2.6	75
194	Transmembrane Topography of the Mitochondrial Oxoglutarate Carrier Assessed by Peptide-Specific Antibodies and Enzymic Cleavage. Biochemistry, 1994, 33, 3705-3713.	2.5	47
195	Cloning and sequencing of the rat cDNA encoding the mitochondria! 2-oxoglutarate carrier protein. DNA Sequence, 1994, 5, 103-109.	0.7	15
196	Sequence and pattern of expression of a bovine homologue of a human mitochondrial transport protein associated with Grave's disease. DNA Sequence, 1992, 3, 71-78.	0.7	22
197	Sequences of the human and bovine genes for the mitochondrial 2-oxoglutarate carrier. DNA Sequence, 1992, 3, 79-88.	0.7	60
198	Chapter 16 Metabolite carriers in mitochondria. New Comprehensive Biochemistry, 1992, 23, 359-384.	0.1	61

#	Article	IF	CITATIONS
199	Transmembrane arrangement of mitochondrial porin or voltage-dependent anion channel (VDAC). Journal of Bioenergetics and Biomembranes, 1992, 24, 21-26.	2.3	63
200	Identification and purification of the ornithine/citrulline carrier from rat liver mitochondira. FEBS Journal, 1992, 207, 449-454.	0.2	58
201	Peptide-specific antibodies and proteases as probes of the transmembrane topology of the bovine heart mitochondrial porin. Biochemistry, 1991, 30, 10191-10200.	2.5	125
202	Characterization of pore-forming activity in liver mitochondria from Anguilla anguilla. Two porins in mitochondria?. Biochimica Et Biophysica Acta - Biomembranes, 1991, 1061, 279-286.	2.6	22
203	Reaction mechanism of the reconstituted oxoglutarate carrier from bovine heart mitochondria. FEBS Journal, 1991, 198, 339-347.	0.2	59
204	Biogenesis of the mitochondrial phosphate carrier. FEBS Journal, 1991, 198, 405-410.	0.2	33
205	Characterization of SH groups in porin of bovine heart mitochondria. Porin cysteines are localized in the channel walls. FEBS Journal, 1991, 202, 903-911.	0.2	21
206	Partial Purification and Reconstitution of the α-Ketoglutarate Carrier from Corn (Zea mays L.) Mitochondria. Plant Physiology, 1991, 96, 1003-1007.	4.8	22
207	Nucleotide sequence of a human heart cDNA encoding the mitochondrial phosphate carrier. DNA Sequence, 1991, 2, 133-135.	0.7	28
208	Sequence of the bovine 2-oxoglutarate/malate carrier protein: structural relationship to other mitochondrial transport proteins. Biochemistry, 1990, 29, 11033-11040.	2.5	175
209	Identification and purification of the carnitine carrier from rat liver mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 1990, 1020, 81-86.	1.0	116
210	Interaction of non-classical detergents with the mitochondrial porin. A new purification procedure and characterization of the pore-forming unit. FEBS Journal, 1989, 183, 179-187.	0.2	102
211	Molecular aspects of isolated and reconstituted carrier proteins from animal mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 1989, 974, 1-23.	1.0	139
212	Porin pores of mitochondrial outer membranes from high and low eukaryotic cells: biochemical and biophysical characterization. Biochimica Et Biophysica Acta - Bioenergetics, 1987, 894, 109-119.	1.0	120
213	A simple and rapid method for the purification of the mitochondrial porin from mammalian tissues. Biochimica Et Biophysica Acta - Biomembranes, 1987, 905, 499-502.	2.6	92
214	Pore formation by the mitochondrial porin of rat brain in lipid bilayer membranes. Biochimica Et Biophysica Acta - Biomembranes, 1986, 860, 268-276.	2.6	62
215	[54] Partial purification and reconstitution of the tricarboxylate carrier from rat liver mitochondria. Methods in Enzymology, 1986, 125, 692-696.	1.0	5
216	The 35 kDa DCCD-binding protein from pig heart mitochondria is the mitochondrial porin. Biochimica Et Biophysica Acta - Biomembranes, 1985, 813, 230-242.	2.6	86

#	Article	IF	CITATIONS
217	Specific elution from hydroxylapatite of the mitochondrial phosphate carrier by cardiolipin. Biochimica Et Biophysica Acta - Bioenergetics, 1984, 766, 386-394.	1.0	86
218	Isolation of mitochondrial porin from Neurospora crassa. FEBS Letters, 1982, 145, 72-76.	2.8	32
219	[26] Direct methods for measuring metabolite transport and distribution in mitochondria. Methods in Enzymology, 1979, 56, 279-301.	1.0	187
220	The transport of l-cysteinesulfinate in rat liver mitochondria. Biochimica Et Biophysica Acta - Biomembranes, 1979, 555, 531-546.	2.6	43
221	Mechanism of inhibition of the dicarboxylate carrier of mitochondria by thiol reagents. Biochimica Et Biophysica Acta - Bioenergetics, 1974, 333, 195-208.	1.0	48
222	Kinetic Study of the Tricarboxylate Carrier in Rat Liver Mitochondria. FEBS Journal, 1972, 26, 587-594.	0.2	195
223	Kinetics and Specificity of the Oxoglutarate Carrier in Rat-Liver Mitochondria. FEBS Journal, 1972, 29, 408-416.	0.2	121
224	Kinetic Study of the Dicarboxylate Carrier in Rat Liver Mitochondria. FEBS Journal, 1971, 22, 66-74.	0.2	186
225	Quantitative Correlation between the Distribution of Anions and the pH Difference across the Mitochondrial Membrane. FEBS Journal, 1970, 17, 230-238.	0.2	168
226	Inhibition of uptake and oxidation of succinate in rat-liver mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 1967, 143, 625-627.	1.0	15