
Christopher L Shaffer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11947190/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antimicrobial prescribing for treatment of serious infections caused by Staphylococcus aureus and methicillin-resistant Staphylococcus aureus in pediatrics: an expert review. Expert Review of Anti-Infective Therapy, 2021, 19, 1107-1116.	4.4	5
2	Pharmacological evaluation of clinically relevant concentrations of (2R,6R)-hydroxynorketamine. Neuropharmacology, 2019, 153, 73-81.	4.1	24
3	Prediction of Human Brain Penetration of P-glycoprotein and Breast Cancer Resistance Protein Substrates Using InÂVitro Transporter Studies and Animal Models. Journal of Pharmaceutical Sciences, 2018, 107, 2225-2235.	3.3	30
4	Reverse and Forward Translational Neuropharmacology in Psychiatric Drug Discovery. Clinical Pharmacology and Therapeutics, 2018, 103, 193-195.	4.7	6
5	Discovery and Characterization of (<i>R</i>)-6-Neopentyl-2-(pyridin-2-ylmethoxy)-6,7-dihydropyrimido[2,1- <i>c</i>][1,4]oxazin-4(9 <i>H</i>)-one (PF-06462894), an Alkyne-Lacking Metabotropic Glutamate Receptor 5 Negative Allosteric Modulator Profiled in both Rat and Nonhuman Primates, Journal of Medicinal Chemistry, 2017, 60, 7764-7780.	6.4	7
6	Mechanisms of Skin Toxicity Associated with Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators. Cell Chemical Biology, 2017, 24, 858-869.e5.	5.2	26
7	Quantitative projection of human brain penetration of the H ₃ antagonist PF-03654746 by integrating rat-derived brain partitioning and PET receptor occupancy. Xenobiotica, 2017, 47, 119-126.	1.1	5
8	The Discovery and Characterization of the α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptor Potentiator <i>N</i> -{(3 <i>S</i> ,4 <i>S</i>)-4-[4-(5-Cyano-2-thienyl)phenoxy]tetrahydrofuran-3-yl}propane-2-sulfonamide (PF-04958242). Journal of Medicinal Chemistry, 2015, 58, 4291-4308.	6.4	23
9	Drug-induced Skin Lesions in Cynomolgus Macaques Treated with Metabotropic Glutamate Receptor 5 (mGluR5) Negative Allosteric Modulators. Toxicologic Pathology, 2015, 43, 995-1003.	1.8	10
10	Diphenhydramine has Similar Interspecies Net Active Influx at the Blood–Brain Barrier. Journal of Pharmaceutical Sciences, 2014, 103, 1557-1562.	3.3	12
11	Phosphodiesterase 10A inhibitor MP-10 effects in primates: Comparison with risperidone and mechanistic implications. Neuropharmacology, 2014, 77, 257-267.	4.1	22
12	Enhancing ketamine translational pharmacology via receptor occupancy normalization. Neuropharmacology, 2014, 86, 174-180.	4.1	46
13	Discovery and Preclinical Characterization of 1-Methyl-3-(4-methylpyridin-3-yl)-6-(pyridin-2-ylmethoxy)-1 <i>H</i> -pyrazolo-[3,4- <i>b</i>]pyrazine (PF470): A Highly Potent, Selective, and Efficacious Metabotropic Glutamate Receptor 5 (mGluR5) Negative Allosteric Modulator, Journal of Medicinal Chemistry, 2014, 57, 861-877.	6.4	51
14	Positive Allosteric Modulation of AMPA Receptors from Efficacy to Toxicity: The Interspecies Exposure-Response Continuum of the Novel Potentiator PF-4778574. Journal of Pharmacology and Experimental Therapeutics, 2013, 347, 212-224.	2.5	46
15	Discovery and Characterization of a Novel Dihydroisoxazole Class of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) Receptor Potentiators. Journal of Medicinal Chemistry, 2013, 56, 9180-9191.	6.4	24
16	Therapeutic doses of antidepressants are projected not to inhibit human α4β2 nicotinic acetylcholine receptors. Neuropharmacology, 2013, 72, 88-95.	4.1	15
17	Assessment of adverse effects of neurotropic drugs in monkeys with the "Drug Effects on the Nervous System―(DENS) scale. Journal of Neuroscience Methods, 2013, 215, 97-102.	2.5	7
18	The effect of ketamine-contaminated control plasma on small-molecule plasma protein binding. Bioanalysis, 2013, 5, 2607-2612.	1.5	0

#	Article	IF	CITATIONS
19	An investigation of metabotropic glutamate receptor 5 negative allosteric modulators in physiological and behavioral indicators of anxiety and cognition in rodents. FASEB Journal, 2013, 27, 1099.4.	0.5	0
20	An Evaluation of Using Rat-Derived Single-Dose Neuropharmacokinetic Parameters to Project Accurately Large Animal Unbound Brain Drug Concentrations. Drug Metabolism and Disposition, 2012, 40, 2162-2173.	3.3	40
21	Using Simcyp to project human oral pharmacokinetic variability in early drug research to mitigate mechanismâ€based adverse events. Biopharmaceutics and Drug Disposition, 2012, 33, 72-84.	1.9	17
22	Strategies to optimize the brain availability of central nervous system drug candidates. Expert Opinion on Drug Discovery, 2011, 6, 371-381.	5.0	48
23	Partial Agonists of the α3β4* Neuronal Nicotinic Acetylcholine Receptor Reduce Ethanol Consumption and Seeking in Rats. Neuropsychopharmacology, 2011, 36, 603-615.	5.4	101
24	Glycine transporter inhibition reverses ketamine-induced working memory deficits. NeuroReport, 2010, 21, 390-394.	1.2	47
25	Species Differences in the Biotransformation of an α4β2 Nicotinic Acetylcholine Receptor Partial Agonist: The Effects of Distinct Glucuronide Metabolites on Overall Compound Disposition. Drug Metabolism and Disposition, 2010, 38, 292-301.	3.3	7
26	Defining Neuropharmacokinetic Parameters in CNS Drug Discovery to Determine Cross-Species Pharmacologic Exposure–Response Relationships. Annual Reports in Medicinal Chemistry, 2010, 45, 55-70.	0.9	37
27	Prevention of ketamine-induced working memory impairments by AMPA potentiators in a nonhuman primate model of cognitive dysfunction. Behavioural Brain Research, 2010, 212, 41-48.	2.2	46
28	Biotransformation of an α ₄ β ₂ Nicotinic Acetylcholine Receptor Partial Agonist in Sprague-Dawley Rats and the Dispositional Characterization of Its <i>N</i> -Carbamoyl Glucuronide Metabolite. Drug Metabolism and Disposition, 2009, 37, 1480-1489.	3.3	8
29	Metabolism and Disposition of a Î ³ -Aminobutyric Acid Type A Receptor Partial Agonist in Humans. Drug Metabolism and Disposition, 2008, 36, 655-662.	3.3	3
30	Metabolism and Disposition of a Selective α7 Nicotinic Acetylcholine Receptor Agonist in Humans. Drug Metabolism and Disposition, 2007, 35, 1188-1195.	3.3	25
31	A Rational Chemical Intervention Strategy To Circumvent Bioactivation Liabilities Associated with a Nonpeptidyl Thrombopoietin Receptor Agonist Containing a 2-Amino-4-arylthiazole Motif. Chemical Research in Toxicology, 2007, 20, 1954-1965.	3.3	52
32	Analytical strategies for identifying drug metabolites. Mass Spectrometry Reviews, 2007, 26, 340-369.	5.4	279
33	Metabolism of a 14C/3H-labeled GABAA receptor partial agonist in rat, dog and human liver microsomes: Evaluation of a dual-radiolabel strategy. Journal of Pharmaceutical and Biomedical Analysis, 2007, 43, 1195-1205.	2.8	17
34	Using a Tritiated Compound to Elucidate Its Preclinical Metabolic and Excretory Pathways in Vivo: Exploring Tritium Exchange Risk. Drug Metabolism and Disposition, 2006, 34, 1615-1623.	3.3	28
35	A Comprehensive Listing of Bioactivation Pathways of Organic Functional Groups. Current Drug Metabolism, 2005, 6, 161-225.	1.2	592
36	BIOTRANSFORMATION OF A GABAA RECEPTOR PARTIAL AGONIST IN SPRAGUE-DAWLEY RATS AND CYNOMOLGUS MONKEYS: IDENTIFICATION OF TWO UNIQUE N-CARBAMOYL METABOLITES. Drug Metabolism and Disposition, 2005, 33, 1688-1699.	3.3	31

#	Article	IF	CITATIONS
37	Formation of Cyclopropanone during Cytochrome P450-Catalyzed N-Dealkylation of a Cyclopropylamine. Journal of the American Chemical Society, 2002, 124, 8268-8274.	13.7	81
38	N-Dealkylation of anN-Cyclopropylamine by Horseradish Peroxidase. Fate of the Cyclopropyl Group. Journal of the American Chemical Society, 2001, 123, 8502-8508.	13.7	67
39	Enzymatic N-Dealkylation of an N-Cyclopropylamine:  An Unusual Fate for the Cyclopropyl Group. Journal of the American Chemical Society, 2001, 123, 349-350.	13.7	34