Ken Nakajima

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1194611/publications.pdf

Version: 2024-02-01

139 4,703 37 64 g-index

142 142 142 6881

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Coarse-Grained Molecular Dynamics Study of Styrene- <i>block</i> -isoprene- <i>block</i> -styrene Thermoplastic Elastomer Blends. ACS Applied Polymer Materials, 2022, 4, 2401-2413.	2.0	6
2	Morphological characterization of the novel fine structure of the PMMA/PVDF blend. Polymer Journal, 2022, 54, 783-792.	1.3	4
3	Insulating Polymer Blend Organic Thin-Film Transistors Based on Bilayer-Type Alkylated Benzothieno[3,2- <i>b</i>]naphtho[2,3- <i>b</i>]thiophene. ACS Applied Materials & mp; Interfaces, 2022, 14, 17719-17726.	4.0	10
4	Evidence of the Transition from a Flexible to Rigid Percolating Network in Polymer Nanocomposites. Macromolecules, 2022, 55, 2739-2745.	2.2	6
5	Direct Visualization of Interfacial Regions between Fillers and Matrix in Rubber Composites Observed by Atomic Force Microscopy-Based Nanomechanics Assisted by Electron Tomography. Langmuir, 2022, 38, 777-785.	1.6	7
6	Study of the Mullins Effect in Carbon Black-Filled Styrene–Butadiene Rubber by Atomic Force Microscopy Nanomechanics. Macromolecules, 2022, 55, 6023-6030.	2.2	10
7	Correction of height-fluctuation-induced systematic errors in polymers by AFM-based nanomechanical measurements. Polymer Testing, 2021, 93, 106919.	2.3	1
8	Silica Nanoparticle Reinforced Composites as Transparent Elastomeric Damping Materials. ACS Applied Nano Materials, 2021, 4, 4140-4152.	2.4	12
9	INFLUENCE OF MASTICATION ON THE MICROSTRUCTURE AND PHYSICAL PROPERTIES OF RUBBER. Rubber Chemistry and Technology, 2021, 94, 533-548.	0.6	3
10	Effect of tip radius on the nanoscale viscoelastic measurement of polymers using loss tangent method in amplitude modulation AFM. Japanese Journal of Applied Physics, 2021, 60, SE1008.	0.8	2
11	Effect of molecular weight and architecture on nanoscale viscoelastic heterogeneity at the surface of polymer films. Polymer, 2021, 228, 123923.	1.8	O
12	Preparation of highâ€performance carbon nanotube/polyamide composite materials by elastic highâ€shear kneading and improvement of properties by induction heating treatment. Journal of Applied Polymer Science, 2021, 138, 50512.	1.3	4
13	Topology-transformable block copolymers based on a rotaxane structure: change in bulk properties with same composition. Nature Communications, 2021, 12, 6175.	5.8	10
14	Local Mechanical Properties of Heterogeneous Nanostructures Developed in a Cured Epoxy Network: Implications for Innovative Adhesion Technology. ACS Applied Nano Materials, 2021, 4, 12188-12196.	2.4	16
15	Reinforcement Mechanism of Carbon Black-Filled Rubber Nanocomposite as Revealed by Atomic Force Microscopy Nanomechanics. Polymers, 2021, 13, 3922.	2.0	10
16	Effect of Coexisting Covalent Cross-Links on the Properties of Rotaxane-Cross-Linked Polymers. ACS Applied Polymer Materials, 2020, 2, 1061-1064.	2.0	16
17	Analysis of Nanomechanical Properties of Polyethylene Using Molecular Dynamics Simulation. Macromolecules, 2020, 53, 6163-6172.	2.2	7
18	Sequential Selective Solvent On-Film Annealing: Fabrication of Monolayers of Ordered Anisotropic Polymer Particles. ACS Applied Materials & Samp; Interfaces, 2020, 12, 35731-35739.	4.0	3

#	Article	IF	Citations
19	Cone–Paraboloid Transition of the Johnson–Kendall–Roberts-Type Hyperboloidal Contact. Langmuir, 2020, 36, 11284-11291.	1.6	О
20	Entropic and Energetic Elasticities of Natural Rubber with a Nanomatrix Structure. Langmuir, 2020, 36, 11341-11348.	1.6	8
21	Heterogeneous Viscoelasticity under Uniaxial Elongation of Isoprene Rubber Vulcanizate Investigated by Nanorheological Atomic Force Microscope and Dynamic Mechanical Analysis. Nihon Reoroji Gakkaishi, 2020, 48, 85-90.	0.2	0
22	Dynamic Moduli Mapping of Rubber Blends by Nanorheological Atomic Force Microscopy. Nihon Reoroji Gakkaishi, 2020, 48, 91-99.	0.2	1
23	Direct visualization of a strain-induced dynamic stress network in a SEBS thermoplastic elastomer with in situ AFM nanomechanics. Japanese Journal of Applied Physics, 2020, 59, SN1013.	0.8	16
24	Nanodiamond Glass with Rubber Bond in Natural Rubber. Advanced Functional Materials, 2020, 30, 1909791.	7.8	15
25	Segmented polyurethanes containing movable rotaxane units on the main chain: Synthesis, structure, and mechanical properties. Polymer, 2020, 193, 122358.	1.8	10
26	Spatial Distribution of Metal Particles in Dried Metal Paste. Journal of the Japan Society of Colour Material, 2020, 93, 133-137.	0.0	0
27	Analytical methods to derive the elastic modulus of soft and adhesive materials from atomic force microcopy force measurements. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1279-1286.	2.4	25
28	A Vinylic Rotaxane Crossâ€Linker Containing Crown Ether for Hydrophilic and Hard Rotaxaneâ€Networked Polymers. Macromolecular Symposia, 2019, 385, 1800186.	0.4	8
29	Mechanical property and structure of a butadiene rubber composite filled with syndiotactic polybutadiene resin. Journal of Applied Polymer Science, 2019, 136, 47934.	1.3	9
30	Liquid Marbles in Nature: Craft of Aphids for Survival. Langmuir, 2019, 35, 6169-6178.	1.6	27
31	Adhesion properties of polyacrylic block copolymer pressureâ€sensitive adhesives and analysis by pulse NMR and AFM force curve. Journal of Applied Polymer Science, 2019, 136, 47791.	1.3	14
32	Investigating the Dynamic Viscoelasticity of Single Polymer Chains using Atomic Force Microscopy. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1736-1743.	2.4	10
33	Dynamic Moduli Mapping of Silica-Filled Styrene–Butadiene Rubber Vulcanizate by Nanorheological Atomic Force Microscopy. Macromolecules, 2019, 52, 311-319.	2.2	29
34	Exceptionally high nanoscale wear resistance of a Cu47Zr45Al8 metallic glass with native and artificially grown oxide. Intermetallics, 2018, 93, 312-317.	1.8	31
35	Nanofishing of a Single Polymer Chain: Temperatureâ€Induced Coil–Globule Transition of Poly(<i>N</i> â€isopropylacrylamide) Chain in Water. Macromolecular Chemistry and Physics, 2018, 219, 1700394.	1.1	18
36	Multiscale Energy Dissipation Mechanism in Tough and Self-Healing Hydrogels. Physical Review Letters, 2018, 121, 185501.	2.9	104

3

#	Article	IF	Citations
37	Direct Mapping of Nanoscale Viscoelastic Dynamics at Nanofiller/Polymer Interfaces. Macromolecules, 2018, 51, 6085-6091.	2.2	37
38	Viscoelastic maps obtained by nanorheological atomic force microscopy with two different driving systems. Japanese Journal of Applied Physics, 2018, 57, 08NB08.	0.8	7
39	Contact-induced stiffening in ultrathin amorphous polystyrene films. Polymer, 2018, 153, 521-528.	1.8	5
40	Development of Flexible Cell-Loaded Ultrathin Ribbons for Minimally Invasive Delivery of Skeletal Muscle Cells. ACS Biomaterials Science and Engineering, 2017, 3, 579-589.	2.6	15
41	Gelatin–Polyaniline Composite Nanofibers Enhanced Excitation–Contraction Coupling System Maturation in Myotubes. ACS Applied Materials & Interfaces, 2017, 9, 42444-42458.	4.0	62
42	Fabrication of poly(ethylene glycol) hydrogels containing vertically and horizontally aligned graphene using dielectrophoresis: An experimental and modeling study. Carbon, 2017, 123, 460-470.	5.4	24
43	Nanomechanical Imaging of the Diffusion of Fullerene into Conjugated Polymer. ACS Nano, 2017, 11, 8660-8667.	7. 3	24
44	Carbon nanotubes embedded in embryoid bodies direct cardiac differentiation. Biomedical Microdevices, 2017, 19, 57.	1.4	30
45	NANOMECHANICS OF THE RUBBER–FILLER INTERFACE. Rubber Chemistry and Technology, 2017, 90, 272-284.	0.6	28
46	Periodic Surface Undulation in Cholesteric Liquid Crystal Elastomers. Macromolecules, 2016, 49, 9561-9567.	2.2	15
47	Intrinsic correlation between \hat{l}^2 -relaxation and spatial heterogeneity in a metallic glass. Nature Communications, 2016, 7, 11516.	5.8	197
48	Twoâ€Dimensional Skyrmion Lattice Formation in a Nematic Liquid Crystal Consisting of Highly Bent Banana Molecules. Angewandte Chemie - International Edition, 2016, 55, 11552-11556.	7.2	9
49	A study of the nanoscale and atomic-scale wear resistance of metallic glasses. Materials Letters, 2016, 185, 54-58.	1.3	23
50	Size-dependent elastic modulus of ultrathin polymer films in glassy and rubbery states. Polymer, 2016, 105, 64-71.	1.8	14
51	Elastic and viscoelastic characterization of inhomogeneous polymers by bimodal atomic force microscopy. Japanese Journal of Applied Physics, 2016, 55, 08NB06.	0.8	30
52	Huge reduction of Young's modulus near a shear band in metallic glass. Journal of Alloys and Compounds, 2016, 687, 221-226.	2.8	21
53	Probing stem cell differentiation using atomic force microscopy. Applied Surface Science, 2016, 366, 254-259.	3.1	18
54	Elastic modulus of ultrathin polymer films characterized by atomic force microscopy: The role of probe radius. Polymer, 2016, 87, 114-122.	1.8	34

#	Article	IF	CITATIONS
55	Graphene induces spontaneous cardiac differentiation in embryoid bodies. Nanoscale, 2016, 8, 7075-7084.	2.8	39
56	Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies. Acta Biomaterialia, 2016, 31, 134-143.	4.1	145
57	Microfluidic Spinning of Cellâ€Responsive Grooved Microfibers. Advanced Functional Materials, 2015, 25, 2250-2259.	7.8	130
58	Observation of dynamical heterogeneities and their time evolution on the surface of an amorphous polymer. Soft Matter, 2015, 11, 1425-1433.	1.2	24
59	Facile and green production of aqueous graphene dispersions for biomedical applications. Nanoscale, 2015, 7, 6436-6443.	2.8	114
60	Spatial coordination of cell orientation directed by nanoribbon sheets. Biomaterials, 2015, 53, 86-94.	5.7	39
61	Two-dimensional electron gas at the Ti-diffused BiFeO3/SrTiO3 interface. Applied Physics Letters, 2015, 107, .	1.5	38
62	Hydrogels containing metallic glass sub-micron wires for regulating skeletal muscle cell behaviour. Biomaterials Science, 2015, 3, 1449-1458.	2.6	27
63	Metallic glass nanofibers in future hydrogel-based scaffolds. , 2014, 2014, 5276-9.		O
	Myotube formation on gelatin nanofibers – Multi-walled carbon nanotubes hybrid scaffolds.		
64	Biomaterials, 2014, 35, 6268-6277.	5.7	109
65	Biomaterials, 2014, 35, 6268-6277. Viscoelasticity of Inhomogeneous Polymers Characterized by Loss Tangent Measurements Using Atomic Force Microscopy. Macromolecules, 2014, 47, 7971-7977.	2.2	37
	Biomaterials, 2014, 35, 6268-6277. Viscoelasticity of Inhomogeneous Polymers Characterized by Loss Tangent Measurements Using		
65	Viscoelasticity of Inhomogeneous Polymers Characterized by Loss Tangent Measurements Using Atomic Force Microscopy. Macromolecules, 2014, 47, 7971-7977. Electrically regulated differentiation of skeletal muscle cells on ultrathin graphene-based films. RSC	2.2	37
65	Viscoelasticity of Inhomogeneous Polymers Characterized by Loss Tangent Measurements Using Atomic Force Microscopy. Macromolecules, 2014, 47, 7971-7977. Electrically regulated differentiation of skeletal muscle cells on ultrathin graphene-based films. RSC Advances, 2014, 4, 9534. Visualization and Quantification of the Chemical and Physical Properties at a Diffusion-Induced	2.2	37 57
65 66 67	Viscoelasticity of Inhomogeneous Polymers Characterized by Loss Tangent Measurements Using Atomic Force Microscopy. Macromolecules, 2014, 47, 7971-7977. Electrically regulated differentiation of skeletal muscle cells on ultrathin graphene-based films. RSC Advances, 2014, 4, 9534. Visualization and Quantification of the Chemical and Physical Properties at a Diffusion-Induced Interface Using AFM Nanomechanical Mapping. Macromolecules, 2014, 47, 3761-3765. Nano-palpation AFM and its quantitative mechanical property mapping. Microscopy (Oxford, England),	2.2 1.7 2.2	37 57 38
65 66 67 68	Viscoelasticity of Inhomogeneous Polymers Characterized by Loss Tangent Measurements Using Atomic Force Microscopy. Macromolecules, 2014, 47, 7971-7977. Electrically regulated differentiation of skeletal muscle cells on ultrathin graphene-based films. RSC Advances, 2014, 4, 9534. Visualization and Quantification of the Chemical and Physical Properties at a Diffusion-Induced Interface Using AFM Nanomechanical Mapping. Macromolecules, 2014, 47, 3761-3765. Nano-palpation AFM and its quantitative mechanical property mapping. Microscopy (Oxford, England), 2014, 63, 193-208. Microfluidic Generation of Polydopamine Gradients on Hydrophobic Surfaces. Langmuir, 2014, 30,	2.2 1.7 2.2 0.7	37 57 38 67
65 66 67 68	Viscoelasticity of Inhomogeneous Polymers Characterized by Loss Tangent Measurements Using Atomic Force Microscopy. Macromolecules, 2014, 47, 7971-7977. Electrically regulated differentiation of skeletal muscle cells on ultrathin graphene-based films. RSC Advances, 2014, 4, 9534. Visualization and Quantification of the Chemical and Physical Properties at a Diffusion-Induced Interface Using AFM Nanomechanical Mapping. Macromolecules, 2014, 47, 3761-3765. Nano-palpation AFM and its quantitative mechanical property mapping. Microscopy (Oxford, England), 2014, 63, 193-208. Microfluidic Generation of Polydopamine Gradients on Hydrophobic Surfaces. Langmuir, 2014, 30, 832-838. New Insights into Morphology of High Performance BHJ Photovoltaics Revealed by High Resolution	2.2 1.7 2.2 0.7	37 57 38 67 27

#	Article	IF	CITATIONS
73	Dielectrophoretically Aligned Carbon Nanotubes to Control Electrical and Mechanical Properties of Hydrogels to Fabricate Contractile Muscle Myofibers. Advanced Materials, 2013, 25, 4028-4034.	11.1	236
74	Atomic Force Microscopy Nanomechanics Visualizes Molecular Diffusion and Microstructure at an Interface. ACS Macro Letters, 2013, 2, 757-760.	2.3	44
75	Nanorheological Mapping of Rubbers by Atomic Force Microscopy. Macromolecules, 2013, 46, 1916-1922.	2.2	61
76	Mechanical Regulation of Cellular Adhesion onto Honeycomb-Patterned Porous Scaffolds by Altering the Elasticity of Material Surfaces. Biomacromolecules, 2013, 14, 1208-1213.	2.6	53
77	Length scale of mechanical heterogeneity in a glassy polymer determined by atomic force microscopy. , 2013, , .		0
78	Length scale of mechanical heterogeneity in a glassy polymer determined by atomic force microscopy. Applied Physics Letters, 2012, 100, 251905.	1.5	23
79	Self-assembled porous templates allow pattern transfer to poly(dimethyl siloxane) sheets through surface wrinkling. Polymer Journal, 2012, 44, 573-578.	1.3	16
80	Quantitative Nanomechanical Investigation on Deformation of Poly(lactic acid). Macromolecules, 2012, 45, 8770-8779.	2.2	51
81	Viscoelasticity Analysis of Elastomer Blend Using Force Measurements of Atomic Force Microscope. Kobunshi Ronbunshu, 2012, 69, 435-442.	0.2	3
82	Characterization of morphology and mechanical properties of block copolymers using atomic force microscopy: Effects of processing conditions. Polymer, 2012, 53, 1960-1965.	1.8	31
83	Nanomechanical Mapping on the Deformed Poly(ε-caprolactone). Macromolecules, 2011, 44, 1779-1782.	2.2	19
84	Characterization of Nanoscale Mechanical Heterogeneity in a Metallic Glass by Dynamic Force Microscopy. Physical Review Letters, 2011, 106, 125504.	2.9	347
85	Characterization of Surface Viscoelasticity and Energy Dissipation in a Polymer Film by Atomic Force Microscopy. Macromolecules, 2011, 44, 8693-8697.	2.2	44
86	Standardization of Excitation Efficiency in Near-field Scanning Optical Microscopy. Analytical Sciences, 2011, 27, 139.	0.8	0
87	Structure and dynamics of polymeric materials in nano-scale. Chinese Journal of Polymer Science (English Edition), 2011, 29, 43-52.	2.0	0
88	Visualization of nanomechanical mapping on polymer nanocomposites by AFM force measurement. Polymer, 2010, 51, 2455-2459.	1.8	58
89	Production of a cellular structure in carbon nanotube/natural rubber composites revealed by nanomechanical mapping. Carbon, 2010, 48, 3708-3714.	5.4	50
90	Investigation of Reactive Polymerâ^Polymer Interface Using Nanomechanical Mapping. Macromolecules, 2010, 43, 5521-5523.	2.2	39

#	Article	IF	CITATIONS
91	True Surface Topography and Nanomechanical Mapping Measurements on Block Copolymers with Atomic Force Microscopy. Macromolecules, 2010, 43, 3169-3172.	2.2	47
92	Investigation of True Surface Morphology and Nanomechanical Properties of Poly(styrene- <i>b</i> -ethylene- <i>co</i> -butylene- <i>b</i> -styrene) Using Nanomechanical Mapping: Effects of Composition. Macromolecules, 2010, 43, 9049-9055.	2.2	42
93	? Determination of spatial resolution of aperture-type near-field scanning optical microscope using a standard sample of quantum-dot embedded polymer film. Journal of the Korean Physical Society, 2010, 56, 1748-1753.	0.3	3
94	Coarse-grained Molecular Dynamics Simulation Study of Nanorheology and Nanotribology. Nihon Reoroji Gakkaishi, 2009, 37, 105-111.	0.2	4
95	Young's Modulus Mapping on Hair Cross-Section by Atomic Force Microscopy. Composite Interfaces, 2009, 16, 1-12.	1.3	12
96	Dynamic Nanofishing of Single Polymer Chains. Rubber Chemistry and Technology, 2009, 82, 271-282.	0.6	0
97	Nanorheological Investigation of Polymeric Surfaces by Atomic Force Microscopy. Composite Interfaces, 2009, 16, 13-25.	1.3	16
98	Polymer nanotechnology applied to polymeric nano-soft-materials. Journal of Physics: Conference Series, 2009, 184, 012030.	0.3	2
99	Study on thermal expansion in injectionâ€molded isotactic polypropylene and thermoplastic elastomer blends. Journal of Applied Polymer Science, 2008, 107, 2930-2943.	1.3	16
100	Realâ€time morphological observation of isotactic polypropylene and poly(ethyleneâ€ <i>co</i> rubber blend during temperature change. Journal of Applied Polymer Science, 2008, 108, 1857-1864.	1.3	3
101	Pulsed NMR Studies on Long-Term Crystallization Behavior and Melting Process of Natural Rubber under Elongation. Rubber Chemistry and Technology, 2008, 81, 110-120.	0.6	3
102	Synthesis and Characterization of Aromatic Block Copolyamides by Condensative Chain Polymerization. Chemistry Letters, 2007, 36, 742-743.	0.7	9
103	Force Spectroscopy on a Single Polymer Chain. Kobunshi Ronbunshu, 2007, 64, 441-451.	0.2	3
104	Nanotribology on Polymer Blend Surface by Atomic Force Microscopy. Polymer Journal, 2006, 38, 31-36.	1.3	10
105	Dynamic Force Spectroscopy on a Single Polymer Chain. Macromolecules, 2006, 39, 5921-5925.	2.2	24
106	Nanoscience of single polymer chains revealed by nanofishing. Chemical Record, 2006, 6, 249-258.	2.9	17
107	Single polymer chain rubber elasticity investigated by atomic force microscopy. Polymer, 2006, 47, 2505-2510.	1.8	41
108	Nanorheology Mapping by Atomic Force Microscopy. Kobunshi Ronbunshu, 2005, 62, 476-487.	0.2	13

#	Article	IF	Citations
109	Anisotropic thermal expansion in polypropylene/poly(ethylene-co-octene) binary blends: influence of arrays of elastomer domains. Polymer, 2005, 46, 4899-4908.	1.8	39
110	Probing intra-molecular mechanics of single circularly permuted green fluorescent protein with atomic force microscopy. Ultramicroscopy, 2005, 105, 90-95.	0.8	6
111	Nanorheology measurement on single circularly permuted green fluorescent protein molecule. Colloids and Surfaces B: Biointerfaces, 2005, 40, 183-187.	2.5	10
112	Atomic Force Microscopy of Mechanical Property of Natural Rubber. Japanese Journal of Applied Physics, 2005, 44, 5393-5396.	0.8	35
113	Nanorheological Analysis of Polymer Surfaces by Atomic Force Microscopy. Japanese Journal of Applied Physics, 2005, 44, 5425-5429.	0.8	54
114	Single-Molecule Force Microscopy of Circularly Permuted Green Fluorescent Protein. Japanese Journal of Applied Physics, 2004, 43, 5520-5523.	0.8	6
115	Rectified photocurrent in a protein based molecular photo-diode consisting of a cytochrome b562-green fluorescent protein chimera self-assembled monolayer. Biosensors and Bioelectronics, 2004, 19, 1169-1174.	5.3	28
116	Structure and Properties of Biodegradable Polymer-Based Blends. Macromolecular Symposia, 2004, 216, 255-264.	0.4	10
117	Anisotropy in Thermal Expansion in Rubber Toughened Polypropylene —Injection Molded System—. Polymer Journal, 2004, 36, 563-566.	1.3	10
118	Biological Imaging with a Near-Field Optical Setup. Journal of Nanoscience and Nanotechnology, 2003, 3, 496-502.	0.9	9
119	Novel Light-Illumination Scanning Tunneling Microscopy Equipped with Optical Fiber Probe. Japanese Journal of Applied Physics, 2003, 42, 4861-4865.	0.8	4
120	Nanorheology measurement on a single polymer chain. Applied Physics Letters, 2002, 81, 724-726.	1.5	34
121	Hybrid Scanning Near-Field Optical/Tunneling Microscopy with Indium-Tin-Oxide/Au Coated Optical Fiber Probe. Japanese Journal of Applied Physics, 2002, 41, 4956-4960.	0.8	7
122	High-Resolution STM and XPS Studies of Thiophene Self-Assembled Monolayers on Au(111). Journal of Physical Chemistry B, 2002, 106, 7139-7141.	1.2	160
123	Model network architectures in vitro on extracellular recording systems using microcontact printing. Synthetic Metals, 2001, 117, 281-283.	2.1	8
124	Ordered networks of rat hippocampal neurons attached to silicon oxide surfaces. Journal of Neuroscience Methods, 2000, 104, 65-75.	1.3	136
125	Dynamic Measurement of Single Protein's Mechanical Properties. Biochemical and Biophysical Research Communications, 2000, 272, 55-63.	1.0	52
126	Nanoscopic Investigation of the Self-Assembly Processes of Dialkyl Disulfides and Dialkyl Sulfides on Au(111). Journal of Physical Chemistry B, 2000, 104, 7411-7416.	1.2	85

#	Article	IF	CITATIONS
127	In Vitro Monitoring of Live Cardiomyocytes Dynamics by a Scanning Near Field Optical Microscope Setup. Optical Review, 1999, 6, 268-271.	1.2	3
128	Macrodipole Interaction of Helical Peptides in a Self-Assembled Monolayer on Gold Substrate. Langmuir, 1998, 14, 6167-6172.	1.6	58
129	Observation of Reconstructed Structure of Au(111) Deposited on Mica by Scanning Tunneling Microscopy. Japanese Journal of Applied Physics, 1997, 36, 326-327.	0.8	3
130	Nanorheology of Polymer Blends Investigated by Atomic Force Microscopy. Japanese Journal of Applied Physics, 1997, 36, 3850-3854.	0.8	57
131	Miscibility in blends of poly(3-hydroxybutyrate) and poly(vinylidene chloride-co-acrylonitrile). Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 2645-2652.	2.4	26
132	Conductive-filler-filled poly(?-caprolactone)/poly(vinyl butyral) blends. I. Crystallization behavior and morphology. Journal of Applied Polymer Science, 1997, 64, 797-802.	1.3	13
133	Conductive-filler-filled poly(?-caprolactone)/poly(vinyl butyral) blends. II. Electric properties (positive) Tj ETQq1 1	0.784314 1.3	rgBT /Overlo
134	Observation of gellan gum by scanning tunneling microscopy. Carbohydrate Polymers, 1996, 30, 77-81.	5.1	51
135	Interaction of Ga Adsorbates with Dangling Bonds on the Hydrogen Terminated Si(100) Surface. Japanese Journal of Applied Physics, 1996, 35, L1085-L1088.	0.8	130
136	Direct Observation of Poly(macromonomer) by Scanning Tunneling Microscopy*1. Japanese Journal of Applied Physics, 1996, 35, 2280-2283.	0.8	7
137	Study of Initial Stage of Molecular Adsorption on Si(100) by Scanning Tunneling Microscopy. Japanese Journal of Applied Physics, 1996, 35, L1360-L1363.	0.8	3
138	Observation of polyaniline chains by scanning tunneling microscope in air and in liquid., 1994,, 235-238.		1
139	Observation of thin film of oneâ€dimensional organic conductor tetrathiofulvalene tetracyanoquinodimethane by means of atomic force microscopy. Applied Physics Letters, 1993, 62, 1892-1894.	1.5	19