A Sakhaee-Pour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11944721/publications.pdf Version: 2024-02-01

A SAKHAFE-DOUD

#	Article	IF	CITATIONS
1	Machine Learning for Capillary Pressure Estimation. SPE Reservoir Evaluation and Engineering, 2022, 25, 1-20.	1.8	3
2	Hydrogen permeability in subsurface. International Journal of Hydrogen Energy, 2022, 47, 27071-27079.	7.1	5
3	Characterizing fracture toughness using machine learning. Journal of Petroleum Science and Engineering, 2021, 200, 108202.	4.2	19
4	Comprehensive pore size characterization of Midra shale. Journal of Petroleum Science and Engineering, 2021, 203, 108576.	4.2	11
5	The effect of vacancy defects on the adsorption of methane on calcite 104 surface. Journal of Materials Research and Technology, 2021, 14, 3051-3058.	5.8	3
6	Predicting carbonate formation permeability using machine learning. Journal of Petroleum Science and Engineering, 2020, 195, 107581.	4.2	12
7	Effect of surface morphology on methane interaction with calcite: a DFT study. RSC Advances, 2020, 10, 16669-16674.	3.6	17
8	Nanoindentation of Shale Cuttings and Its Application to Core Measurements. Petrophysics, 2020, 61, 404-416.	0.3	5
9	Two-Scale Geomechanics of Shale. SPE Reservoir Evaluation and Engineering, 2019, 22, 161-172.	1.8	7
10	Integrating acoustic emission into percolation theory to predict permeability enhancement. Journal of Petroleum Science and Engineering, 2018, 160, 152-159.	4.2	13
11	Predicting Breakdown Pressure and Breakdown Cycle in Cyclic Fracturing. SPE Production and Operations, 2018, 33, 761-769.	0.6	9
12	Pore Size of Shale Based on Acyclic Pore Model. Transport in Porous Media, 2018, 124, 345-368.	2.6	11
13	Critical properties (T, P) of shale gas at the core scale. International Journal of Heat and Mass Transfer, 2018, 127, 579-588.	4.8	10
14	Two-Scale Geomechanics of Carbonates. Rock Mechanics and Rock Engineering, 2018, 51, 3667-3679.	5.4	3
15	A Simple Relation for Estimating Shale Permeability. Transport in Porous Media, 2018, 124, 883-901.	2.6	11
16	Slippage in shale based on acyclic pore model. International Journal of Heat and Mass Transfer, 2018, 126, 761-772.	4.8	12
17	Decomposing J-function to Account for the Pore Structure Effect in Tight Gas Sandstones. Transport in Porous Media, 2017, 116, 453-471.	2.6	7
18	Viscosity of shale gas. Fuel, 2017, 191, 87-96.	6.4	19

A SAKHAEE-POUR

#	Article	IF	CITATIONS
19	The Permeability of a Representative Carbonate Volume with a Large Vug. Transport in Porous Media, 2017, 120, 515-534.	2.6	3
20	Pore-body and -throat size distributions of The Geysers. Geothermics, 2017, 65, 313-321.	3.4	3
21	Modeling adsorption–desorption hysteresis in shales: Acyclic pore model. Fuel, 2016, 181, 557-565.	6.4	26
22	Effective Flow Properties for Cells Containing Fractures of Arbitrary Geometry. SPE Journal, 2016, 21, 0965-0980.	3.1	16
23	Fractality of The Geysers. Geothermal Energy, 2016, 4, .	1.9	3
24	Fractal dimensions of shale. Journal of Natural Gas Science and Engineering, 2016, 30, 578-582.	4.4	90
25	Pore-scale modeling of The Geysers. Geothermics, 2016, 60, 58-65.	3.4	5
26	Pore structure of shale. Fuel, 2015, 143, 467-475.	6.4	71
27	Effect of pore structure on the producibility of tight-gas sandstones. AAPG Bulletin, 2014, 98, 663-694.	1.5	124
28	Modeling fluid injection in fractures with a reservoir simulator coupled to a boundary element method. Computational Geosciences, 2014, 18, 613-624.	2.4	27
29	Fracture Cell for Flow Modeling. , 2013, , .		Ο
30	Natural frequencies of C60, C70, and C80 fullerenes. Applied Physics Letters, 2010, 96, .	3.3	5
31	Elastic properties of single-layered graphene sheet. Solid State Communications, 2009, 149, 91-95.	1.9	226
32	Elastic buckling of single-layered graphene sheet. Computational Materials Science, 2009, 45, 266-270.	3.0	122
33	Applications of single-layered graphene sheets as mass sensors and atomistic dust detectors. Solid State Communications, 2008, 145, 168-172.	1.9	192
34	Potential application of single-layered graphene sheet as strain sensor. Solid State Communications, 2008, 147, 336-340.	1.9	153
35	Vibrational analysis of single-layered graphene sheets. Nanotechnology, 2008, 19, 085702.	2.6	134
36	Development of an equation to predict radial modulus of elasticity for single-walled carbon nanotubes. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2008, 222, 1109-1115.	2.1	4