Xiaojun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11941240/publications.pdf

Version: 2024-02-01

		236925	395702
33	2,896	25	33
papers	citations	h-index	g-index
33	33	33	2159
	33	33	2137
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Constructing a Strongly Absorbing Lowâ€Bandgap Polymer Acceptor for Highâ€Performance Allâ€Polymer Solar Cells. Angewandte Chemie - International Edition, 2017, 56, 13503-13507.	13.8	468
2	Improving open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17%. Science China Chemistry, 2020, 63, 325-330.	8.2	292
3	Simplified synthetic routes for low cost and high photovoltaic performance n-type organic semiconductor acceptors. Nature Communications, 2019, 10, 519.	12.8	231
4	16% efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend. Joule, 2021, 5, 914-930.	24.0	228
5	Side Chain Engineering on Medium Bandgap Copolymers to Suppress Triplet Formation for Highâ€Efficiency Polymer Solar Cells. Advanced Materials, 2017, 29, 1703344.	21.0	209
6	Fine-tuning of side-chain orientations on nonfullerene acceptors enables organic solar cells with 17.7% efficiency. Energy and Environmental Science, 2021, 14, 3469-3479.	30.8	158
7	Solution-processable n-doped graphene-containing cathode interfacial materials for high-performance organic solar cells. Energy and Environmental Science, 2019, 12, 3400-3411.	30.8	129
8	High performance tandem organic solar cells via a strongly infrared-absorbing narrow bandgap acceptor. Nature Communications, 2021, 12, 178.	12.8	122
9	Effect of Alkylsilyl Sideâ€Chain Structure on Photovoltaic Properties of Conjugated Polymer Donors. Advanced Energy Materials, 2018, 8, 1702324.	19.5	102
10	Achieving 16.68% efficiency ternary as-cast organic solar cells. Science China Chemistry, 2021, 64, 581-589.	8.2	99
11	Synthesis and Photovoltaic Properties of a Series of Narrow Bandgap Organic Semiconductor Acceptors with Their Absorption Edge Reaching 900 nm. Chemistry of Materials, 2017, 29, 10130-10138.	6.7	93
12	Medium Bandgap Polymer Donor Based on Bi(trialkylsilylthienylâ€benzo[1,2â€b:4,5â€b′]â€difuran) for High Performance Nonfullerene Polymer Solar Cells. Advanced Energy Materials, 2017, 7, 1700746.	19.5	72
13	Insertion of double bond Ï∈-bridges of A–D–A acceptors for high performance near-infrared polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 22588-22597.	10.3	61
14	Nonradiative Triplet Loss Suppressed in Organic Photovoltaic Blends with Fluoridated Nonfullerene Acceptors. Journal of the American Chemical Society, 2021, 143, 4359-4366.	13.7	60
15	Effect of the chlorine substitution position of the end-group on intermolecular interactions and photovoltaic performance of small molecule acceptors. Energy and Environmental Science, 2020, 13, 5028-5038.	30.8	56
16	Constructing a Strongly Absorbing Lowâ€Bandgap Polymer Acceptor for Highâ€Performance Allâ€Polymer Solar Cells. Angewandte Chemie, 2017, 129, 13688-13692.	2.0	51
17	A Simple Approach to Prepare Chlorinated Polymer Donors with Low-Lying HOMO Level for High Performance Polymer Solar Cells. Chemistry of Materials, 2019, 31, 6558-6567.	6.7	50
18	Effects of Shortâ€Axis Alkoxy Substituents on Molecular Selfâ€Assembly and Photovoltaic Performance of Indacenodithiopheneâ€Based Acceptors. Advanced Functional Materials, 2020, 30, 1906855.	14.9	50

#	Article	IF	Citations
19	Medium band-gap non-fullerene acceptors based on a benzothiophene donor moiety enabling high-performance indoor organic photovoltaics. Energy and Environmental Science, 2021, 14, 4555-4563.	30.8	43
20	High performance as-cast semitransparent polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 4670-4677.	10.3	41
21	Green solvent-processed organic solar cells based on a low cost polymer donor and a small molecule acceptor. Journal of Materials Chemistry C, 2020, 8, 7718-7724.	5.5	40
22	Fine-tuning HOMO energy levels between PM6 and PBDB-T polymer donors via ternary copolymerization. Science China Chemistry, 2020, 63, 1256-1261.	8.2	38
23	Improvement of Photovoltaic Performance of Polymer Solar Cells by Rational Molecular Optimization of Organic Molecule Acceptors. Advanced Energy Materials, 2018, 8, 1800815.	19.5	36
24	Effect of Replacing Thiophene by Selenophene on the Photovoltaic Performance of Wide Bandgap Copolymer Donors. Macromolecules, 2019, 52, 4776-4784.	4.8	26
25	Effects of fused-ring regiochemistry on the properties and photovoltaic performance of n-type organic semiconductor acceptors. Journal of Materials Chemistry A, 2018, 6, 15933-15941.	10.3	25
26	Enhanced performance of ternary organic solar cells with a wide bandgap acceptor as the third component. Journal of Materials Chemistry A, 2019, 7, 27423-27431.	10.3	23
27	Branched Alkoxy Side Chain Enables High-Performance Non-Fullerene Acceptors with High Open-Circuit Voltage and Highly Ordered Molecular Packing. Chemistry of Materials, 2022, 34, 2059-2068.	6.7	20
28	Effects of Alkoxy and Fluorine Atom Substitution of Donor Molecules on the Morphology and Photovoltaic Performance of All Small Molecule Organic Solar Cells. Frontiers in Chemistry, 2018, 6, 413.	3.6	19
29	Ternary non-fullerene polymer solar cells with a high crystallinity n-type organic semiconductor as the second acceptor. Journal of Materials Chemistry A, 2018, 6, 24814-24822.	10.3	16
30	High electron mobility fluorinated indacenodithiophene small molecule acceptors for organic solar cells. Chinese Chemical Letters, 2021, 32, 1257-1262.	9.0	15
31	Optimizing spectral and morphological match of nonfullerene acceptors toward efficient indoor organic photovoltaics with enhanced light source adaptability. Nano Energy, 2022, 98, 107281.	16.0	11
32	Effect of Isomerization of Linking Units on the Photovoltaic Performance of PSMA-Type Polymer Acceptors in All-Polymer Solar Cells. Macromolecules, 2022, 55, 4420-4428.	4.8	11
33	Two new A-D-A type small molecule acceptors based on C2v-symmetric dithienocyclopentaspiro[fluorene-9,9′-xanthene] core for polymer solar cells. Organic Electronics, 2021, 92, 106120.	2.6	1