Constantine Trahiotis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11940042/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancing sensitivity to interaural delays at high frequencies by using "transposed stimuli― Journal of the Acoustical Society of America, 2002, 112, 1026-1036.	1.1	246
2	Lateralization of complex binaural stimuli: A weightedâ€image model. Journal of the Acoustical Society of America, 1988, 84, 156-165.	1.1	172
3	Peripheral auditory processing and investigations of the "precedence effect―which utilize successive transient stimuli. Journal of the Acoustical Society of America, 2001, 110, 1505-1513.	1.1	103
4	Detection of interaural delay in highâ€frequency sinusoidally amplitudeâ€modulated tones, twoâ€ŧone complexes, and bands of noise. Journal of the Acoustical Society of America, 1994, 95, 3561-3567.	1.1	96
5	Behavioral Investigation of Some Possible Effects of Sectioning the Crossed Olivocochlear Bundle. Journal of the Acoustical Society of America, 1970, 47, 592-596.	1.1	94
6	The normalized correlation: Accounting for binaural detection across center frequency. Journal of the Acoustical Society of America, 1996, 100, 3774-3784.	1.1	89
7	Lateralization of bands of noise: Effects of bandwidth and differences of interaural time and phase. Journal of the Acoustical Society of America, 1989, 86, 1285-1293.	1.1	82
8	Lateralization of lowâ€frequency, complex waveforms: The use of envelopeâ€based temporal disparities. Journal of the Acoustical Society of America, 1985, 77, 1868-1880.	1.1	74
9	Sensitivity to brief changes of interaural time and interaural intensity. Journal of the Acoustical Society of America, 2001, 109, 1604-1615.	1.1	63
10	Lateralization of sinusoidally amplitudeâ€modulated tones: Effects of spectral locus and temporal variation. Journal of the Acoustical Society of America, 1985, 78, 514-523.	1.1	61
11	Discrimination of interaural temporal disparities by normalâ€hearing listeners and listeners with highâ€frequency sensorineural hearing loss. Journal of the Acoustical Society of America, 1986, 79, 1541-1547.	1.1	59
12	How sensitivity to ongoing interaural temporal disparities is affected by manipulations of temporal features of the envelopes of high-frequency stimuli. Journal of the Acoustical Society of America, 2009, 125, 3234.	1.1	57
13	The normalized interaural correlation: Accounting for NoSÏ€ thresholds obtained with Gaussian and "low-noise―masking noise. Journal of the Acoustical Society of America, 1999, 106, 870-876.	1.1	56
14	Discrimination of interaural envelope correlation and its relation to binaural unmasking at high frequencies. Journal of the Acoustical Society of America, 1992, 91, 306-316.	1.1	55
15	On the use of the normalized correlation as an index of interaural envelope correlation. Journal of the Acoustical Society of America, 1996, 100, 1754-1763.	1.1	55
16	Enhancing interaural-delay-based extents of laterality at high frequencies by using "transposed stimuli― Journal of the Acoustical Society of America, 2003, 113, 3335.	1.1	55
17	Lateralization of bands of noise and sinusoidally amplitude-modulated tones: Effects of spectral locus and bandwidth. Journal of the Acoustical Society of America, 1986, 79, 1950-1957.	1.1	54
18	Detection of interaural delay in highâ€frequency noise. Journal of the Acoustical Society of America, 1982, 71, 147-152.	1.1	53

CONSTANTINE TRAHIOTIS

#	Article	IF	CITATIONS
19	Detectability of interaural delays over select spectral regions: Effects of flanking noise. Journal of the Acoustical Society of America, 1990, 87, 810-813.	1.1	53
20	Masking with interaurally delayed stimuli: The use of "internal―delays in binaural detection. Journal of the Acoustical Society of America, 1999, 105, 388-399.	1.1	52
21	Lateralization of lowâ€frequency tones: Relative potency of gating and ongoing interaural delays. Journal of the Acoustical Society of America, 1991, 90, 3077-3085.	1.1	45
22	Cortical lesions and auditory discrimination Psychological Bulletin, 1972, 77, 198-222.	6.1	44
23	Binaural detection as a function of interaural correlation and bandwidth of masking noise: Implications for estimates of spectral resolution. Journal of the Acoustical Society of America, 1998, 103, 1609-1614.	1.1	43
24	Extents of laterality and binaural interference effects. Journal of the Acoustical Society of America, 1996, 99, 3632-3637.	1.1	41
25	Comparison of critical ratios and critical bands in the monaural chinchilla. Journal of the Acoustical Society of America, 1975, 57, 193-199.	1.1	40
26	Effects of signal duration and masker duration on detectability under diotic and dichotic listening conditions. Perception & Psychophysics, 1972, 12, 333-334.	2.3	37
27	Lateralization of lowâ€frequency tones and narrow bands of noise. Journal of the Acoustical Society of America, 1986, 79, 1563-1570.	1.1	37
28	Behavioral manifestations of audiometrically-defined "slight―or "hidden―hearing loss revealed by measures of binaural detection. Journal of the Acoustical Society of America, 2016, 140, 3540-3548.	1.1	37
29	The effect of overall level on sensitivity to interaural differences of time and level at high frequencies. Journal of the Acoustical Society of America, 2013, 134, 494-502.	1.1	36
30	Inter-individual differences in binaural detection of low-frequency or high-frequency tonal signals masked by narrow-band or broadband noise. Journal of the Acoustical Society of America, 1998, 103, 2069-2078.	1.1	35
31	Binaural interference effects measured with maskingâ€level difference and with ITD―and IIDâ€discrimination paradigms. Journal of the Acoustical Society of America, 1995, 98, 155-163.	1.1	34
32	Acrossâ€frequency interaction in lateralization of complex binaural stimuli. Journal of the Acoustical Society of America, 1994, 96, 3804-3806.	1.1	32
33	A new way to account for binaural detection as a function of interaural noise correlation. Journal of the Acoustical Society of America, 1997, 101, 1019-1022.	1.1	32
34	Interference in detection of interaural delay in a sinusoidally amplitudeâ€modulated tone produced by a second, spectrally remote sinusoidally amplitudeâ€modulated tone. Journal of the Acoustical Society of America, 1995, 97, 1808-1816.	1.1	29
35	The effects of randomizing values of interaural disparities on binaural detection and on discrimination of interaural correlation. Journal of the Acoustical Society of America, 1997, 102, 1113-1120.	1.1	28
36	Manipulating the "straightness―and "curvature―of patterns of interaural cross correlation affects listeners' sensitivity to changes in interaural delay. Journal of the Acoustical Society of America, 2001, 109, 321-330.	1.1	28

CONSTANTINE TRAHIOTIS

#	Article	IF	CITATIONS
37	The apparent immunity of high-frequency "transposed―stimuli to low-frequency binaural interference. Journal of the Acoustical Society of America, 2004, 116, 3062-3069.	1.1	27
38	Effect of "backward―masker fringe on the detectability of pulsed diotic and dichotic tonal signals. Perception & Psychophysics, 1972, 12, 335-338.	2.3	25
39	Lateralization produced by interaural temporal and intensitive disparities of high-frequency, raised-sine stimuli: Data and modeling. Journal of the Acoustical Society of America, 2012, 131, 409-415.	1.1	25
40	Interaural temporal discrimination using two sinusoidally amplitudeâ€modulated, highâ€frequency tones: Conditions of summation and interference. Journal of the Acoustical Society of America, 1993, 93, 480-487.	1.1	24
41	Effects of interaural delay, center frequency, and no more than "slight―hearing loss on precision of binaural processing: Empirical data and quantitative modeling. Journal of the Acoustical Society of America, 2018, 144, 292-307.	1.1	24
42	A consideration of the normalization that is typically included in correlation-based models of binaural detection. Journal of the Acoustical Society of America, 2001, 109, 830-833.	1.1	22
43	Accounting quantitatively for sensitivity to envelope-based interaural temporal disparities at high frequencies. Journal of the Acoustical Society of America, 2010, 128, 1224.	1.1	22
44	Peripheral auditory processing, the precedence effect and responses of single units in the inferior colliculus. Hearing Research, 2002, 168, 55-59.	2.0	21
45	An interaural-correlation-based approach that accounts for a wide variety of binaural detection data. Journal of the Acoustical Society of America, 2017, 141, 1150-1160.	1.1	21
46	Sensitivity to envelope-based interaural delays at high frequencies: Center frequency affects the envelope rate-limitation. Journal of the Acoustical Society of America, 2014, 135, 808-816.	1.1	20
47	On the use of adaptive procedures in binaural experiments. Journal of the Acoustical Society of America, 1990, 87, 1359-1361.	1.1	19
48	Interaural Correlation as the Basis of a Working Model of Binaural Processing: An Introduction. , 2005, , 238-271.		19
49	The Role of Consistency of Interaural Timing Over Frequency in Binaural Lateralization. , 1992, , 547-554.		19
50	The effects of signal duration on NoSo and NoSï€ thresholds at 500 Hz and 4 kHz. Journal of the Acoustical Society of America, 1999, 105, 1776-1783.	1.1	17
51	Binaural signal detection, overall masking level, and masker interaural correlation: Revisiting the internal noise hypothesis. Journal of the Acoustical Society of America, 2008, 124, 3850-3860.	1.1	17
52	Lateralization produced by envelope-based interaural temporal disparities of high-frequency, raised-sine stimuli: Empirical data and modeling. Journal of the Acoustical Society of America, 2011, 129, 1501-1508.	1.1	17
53	Binaural interaction in backward masking. Perception & Psychophysics, 1972, 11, 92-94.	2.3	16
54	Lateralization of bands of noise as a function of combinations of interaural intensitive differences, interaural temporal differences, and bandwidth. Journal of the Acoustical Society of America, 1994, 95, 1482-1489.	1.1	15

#	Article	IF	CITATIONS
55	Binaural beats at high frequencies: Listeners' use of envelopeâ€based interaural temporal and intensitive disparities. Journal of the Acoustical Society of America, 1996, 99, 1670-1679.	1.1	15
56	Measures of extents of laterality for high-frequency "transposed―stimuli under conditions of binaural interference. Journal of the Acoustical Society of America, 2005, 118, 1626-1635.	1.1	15
57	Regression interpretation of differences in timeâ€intensity trading ratios obtained in studies of laterality using the method of adjustment. Journal of the Acoustical Society of America, 1978, 64, 1041-1047.	1.1	14
58	Journal of the Acoustical Society of America, 1993, 94, 735-742.	1.1	14
59	Lateralization produced by interaural intensitive disparities appears to be larger for high- vs low-frequency stimuli. Journal of the Acoustical Society of America, 2011, 129, EL15-EL20.	1.1	14
60	No more than "slight―hearing loss and degradations in binaural processing. Journal of the Acoustical Society of America, 2019, 145, 2094-2102.	1.1	14
61	The discrimination of samples of noise in monotic, diotic, and dichotic conditions. Journal of the Acoustical Society of America, 1995, 97, 3775-3781.	1.1	13
62	Why do transposed stimuli enhance binaural processing?: Interaural envelope correlation vs envelope normalized fourth moment. Journal of the Acoustical Society of America, 2007, 121, EL23-EL28.	1.1	13
63	Some physical and psychological effects produced by selective delays of the envelope of narrow bands of noise. Hearing Research, 1987, 29, 147-161.	2.0	11
64	Detection of antiphasic sinusoids added to the envelopes of high-frequency bands of noise. Hearing Research, 1992, 62, 157-165.	2.0	11
65	Discrimination of interaural temporal disparities conveyed by high-frequency sinusoidally amplitude-modulated tones and high-frequency transposed tones: Effects of spectrally flanking noises. Journal of the Acoustical Society of America, 2008, 124, 3088-3094.	1.1	11
66	Converging measures of binaural detection yield estimates of precision of coding of interaural temporal disparities. Journal of the Acoustical Society of America, 2015, 138, EL474-EL479.	1.1	11
67	Binaural detection of 500-Hz tones in broadband and in narrowband masking noise: Effects of signal/masker duration and forward masking fringes. Journal of the Acoustical Society of America, 2006, 119, 2981-2993.	1.1	10
68	Binaural detection with spectrally nonoverlapping signals and maskers: Evidence for masking by aural distortion products. Journal of the Acoustical Society of America, 1997, 102, 2966-2972.	1.1	9
69	Accounting for binaural detection as a function of masker interaural correlation: Effects of center frequency and bandwidth. Journal of the Acoustical Society of America, 2014, 136, 3211-3220.	1.1	7
70	Binaural detection as a joint function of masker bandwidth, masker interaural correlation, and interaural time delay: Empirical data and modeling. Journal of the Acoustical Society of America, 2020, 148, 3481-3488.	1.1	6
71	Stimulus coherence influences sound-field localization and fusion/segregation of leading and lagging sounds. Journal of the Acoustical Society of America, 2017, 141, 2673-2680.	1.1	5
72	The effect of nonsimultaneous onâ€frequency and offâ€frequency cues on the detection of a tonal signal masked by narrowâ€band noise. Journal of the Acoustical Society of America, 1994, 95, 920-930.	1.1	4

CONSTANTINE TRAHIOTIS

#	Article	IF	CITATIONS
73	Extension of the Neff Neural Model to Situations Demanding Discrimination among Complex Stimuli. Journal of the Acoustical Society of America, 1970, 47, 1116-1127.	1.1	3
74	Detection of interaural delay in bands of noise: Effects of spectral interference combined with spectral uncertainty. Journal of the Acoustical Society of America, 1994, 95, 3568-3573.	1.1	3
75	Lateral position of dichotic pitches can be substantially affected by interaural intensitive differences. Journal of the Acoustical Society of America, 1996, 100, 1901-1904.	1.1	3
76	The fMRI Data of Thompson et al. (2006) Do Not Constrain How the Human Midbrain Represents Interaural Time Delay. JARO - Journal of the Association for Research in Otolaryngology, 2019, 20, 305-311.	1.8	3
77	A crew of listeners with no more than "slight―hearing loss who exhibit binaural deficits also exhibit reduced amounts of binaural interference. Journal of the Acoustical Society of America, 2021, 150, 2977-2984.	1.1	3
78	The import of within-listener variability to understanding the precedence effect. Journal of the Acoustical Society of America, 2016, 139, 1235-1240.	1.1	2
79	Processing of interaural temporal disparities with both "transposed―and conventional stimuli. , 2005, , 376-388.		1
80	The Precedence Effect: Spectral, Temporal, and Intensitive Interactions. Acta Acustica United With Acustica, 2018, 104, 813-816.	0.8	1
81	A crew of listeners with no more than "slight―hearing loss who exhibit binaural deficits also exhibit higher levels of stimulus-independent internal noise. Journal of the Acoustical Society of America, 2020, 147, 3188-3196.	1.1	1
82	When and How Envelope "Rate-Limitations―Affect Processing of Interaural Temporal Disparities Conveyed by High-Frequency Stimuli. Advances in Experimental Medicine and Biology, 2013, 787, 263-271.	1.6	0
83	Advances in the Understanding of Binaural Information Processing: Consideration of the Stimulus as Processed. Springer Handbook of Auditory Research, 2014, , 585-600.	0.7	Ο