
E John Wherry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11939549/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Restoring function in exhausted CD8 T cells during chronic viral infection. Nature, 2006, 439, 682-687.	27.8	3,471
2	T cell exhaustion. Nature Immunology, 2011, 12, 492-499.	14.5	3,178
3	Molecular and cellular insights into T cell exhaustion. Nature Reviews Immunology, 2015, 15, 486-499.	22.7	3,159
4	PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature, 2006, 443, 350-354.	27.8	2,380
5	Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature, 2015, 520, 373-377.	27.8	1,955
6	Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature, 2018, 560, 382-386.	27.8	1,836
7	Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nature Immunology, 2009, 10, 29-37.	14.5	1,754
8	Molecular Signature of CD8+ T Cell Exhaustion during Chronic Viral Infection. Immunity, 2007, 27, 670-684.	14.3	1,695
9	Lineage relationship and protective immunity of memory CD8 T cell subsets. Nature Immunology, 2003, 4, 225-234.	14.5	1,621
10	Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nature Immunology, 2003, 4, 1191-1198.	14.5	1,605
11	Effector and memory T-cell differentiation: implications for vaccine development. Nature Reviews Immunology, 2002, 2, 251-262.	22.7	1,524
12	Viral Persistence Alters CD8 T-Cell Immunodominance and Tissue Distribution and Results in Distinct Stages of Functional Impairment. Journal of Virology, 2003, 77, 4911-4927.	3.4	1,340
13	The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nature Immunology, 2007, 8, 239-245.	14.5	1,286
14	T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature, 2017, 545, 60-65.	27.8	1,280
15	Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science, 2020, 369, .	12.6	1,280
16	Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nature Medicine, 2018, 24, 563-571.	30.7	1,150
17	CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer. Annual Review of Immunology, 2019, 37, 457-495.	21.8	1,143
18	Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nature Immunology, 2005, 6, 1236-1244.	14.5	1,055

#	Article	IF	CITATIONS
19	Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science, 2016, 354, 1160-1165.	12.6	939
20	TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature, 2019, 571, 211-218.	27.8	934
21	Defining â€~T cell exhaustion'. Nature Reviews Immunology, 2019, 19, 665-674.	22.7	879
22	Redefining Chronic Viral Infection. Cell, 2009, 138, 30-50.	28.9	876
23	Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nature Immunology, 2011, 12, 1045-54.	14.5	875
24	Overcoming T cell exhaustion in infection and cancer. Trends in Immunology, 2015, 36, 265-276.	6.8	856
25	Tumor Interferon Signaling Regulates a Multigenic Resistance Program to Immune Checkpoint Blockade. Cell, 2016, 167, 1540-1554.e12.	28.9	830
26	Commensal Bacteria Calibrate the Activation Threshold of Innate Antiviral Immunity. Immunity, 2012, 37, 158-170.	14.3	817
27	Memory CD8 T-Cell Differentiation during Viral Infection. Journal of Virology, 2004, 78, 5535-5545.	3.4	767
28	Progenitor and Terminal Subsets of CD8 ⁺ T Cells Cooperate to Contain Chronic Viral Infection. Science, 2012, 338, 1220-1225.	12.6	760
29	The epigenetic landscape of T cell exhaustion. Science, 2016, 354, 1165-1169.	12.6	694
30	Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature, 2013, 498, 113-117.	27.8	639
31	mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science, 2021, 374, abm0829.	12.6	609
32	Interleukin 15 Is Required for Proliferative Renewal of Virus-specific Memory CD8 T Cells. Journal of Experimental Medicine, 2002, 195, 1541-1548.	8.5	598
33	Bioenergetic Insufficiencies Due to Metabolic Alterations Regulated by the Inhibitory Receptor PD-1 Are an Early Driver of CD8 + T Cell Exhaustion. Immunity, 2016, 45, 358-373.	14.3	560
34	Antigen-Independent Differentiation and Maintenance of Effector-like Resident Memory T Cells in Tissues. Journal of Immunology, 2012, 188, 4866-4875.	0.8	537
35	Heterologous immunity provides a potent barrier to transplantation tolerance. Journal of Clinical Investigation, 2003, 111, 1887-1895.	8.2	535
36	Heterogeneity and Cell-Fate Decisions in Effector and Memory CD8+ T Cell Differentiation during Viral Infection. Immunity, 2007, 27, 393-405.	14.3	502

#	Article	IF	CITATIONS
37	Developmental Relationships of Four Exhausted CD8+ T Cell Subsets Reveals Underlying Transcriptional and Epigenetic Landscape Control Mechanisms. Immunity, 2020, 52, 825-841.e8.	14.3	497
38	Network Analysis Reveals Centrally Connected Genes and Pathways Involved in CD8+ T Cell Exhaustion versus Memory. Immunity, 2012, 37, 1130-1144.	14.3	480
39	A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma. Nature Medicine, 2019, 25, 454-461.	30.7	466
40	Selective expansion of a subset of exhausted CD8 T cells by αPD-L1 blockade. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15016-15021.	7.1	462
41	Molecular regulation of effector and memory T cell differentiation. Nature Immunology, 2014, 15, 1104-1115.	14.5	462
42	Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF. Nature Medicine, 2010, 16, 1147-1151.	30.7	448
43	Antigen-independent memory CD8 T cells do not develop during chronic viral infection. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16004-16009.	7.1	444
44	Liver-Infiltrating Lymphocytes in Chronic Human Hepatitis C Virus Infection Display an Exhausted Phenotype with High Levels of PD-1 and Low Levels of CD127 Expression. Journal of Virology, 2007, 81, 2545-2553.	3.4	431
45	Molecular and Transcriptional Basis of CD4+ T Cell Dysfunction during Chronic Infection. Immunity, 2014, 40, 289-302.	14.3	418
46	A Role for the Transcriptional Repressor Blimp-1 in CD8+ T Cell Exhaustion during Chronic Viral Infection. Immunity, 2009, 31, 309-320.	14.3	410
47	TCF-1-Centered Transcriptional Network Drives an Effector versus Exhausted CD8ÂT Cell-Fate Decision. Immunity, 2019, 51, 840-855.e5.	14.3	409
48	Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection. Nature Immunology, 2011, 12, 663-671.	14.5	402
49	Cutting Edge: Rapid In Vivo Killing by Memory CD8 T Cells. Journal of Immunology, 2003, 171, 27-31.	0.8	398
50	Induction of T-cell Immunity Overcomes Complete Resistance to PD-1 and CTLA-4 Blockade and Improves Survival in Pancreatic Carcinoma. Cancer Immunology Research, 2015, 3, 399-411.	3.4	387
51	Reinvigorating exhausted HIV-specific T cells via PD-1–PD-1 ligand blockade. Journal of Experimental Medicine, 2006, 203, 2223-2227.	8.5	374
52	Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. Journal of Experimental Medicine, 2015, 212, 1125-1137.	8.5	368
53	Rapid induction of antigen-specific CD4+ TÂcells is associated with coordinated humoral and cellular immunity to SARS-CoV-2 mRNA vaccination. Immunity, 2021, 54, 2133-2142.e3.	14.3	367
54	Single-cell RNA-seq reveals TOX as a key regulator of CD8+ T cell persistence in chronic infection. Nature Immunology, 2019, 20, 890-901.	14.5	361

#	Article	IF	CITATIONS
55	Therapeutic use of IL-2 to enhance antiviral T-cell responses in vivo. Nature Medicine, 2003, 9, 540-547.	30.7	352
56	Anomalous Type 17 Response to Viral Infection by CD8 ⁺ T Cells Lacking T-bet and Eomesodermin. Science, 2008, 321, 408-411.	12.6	339
57	Cutting Edge: The Transcription Factor Eomesodermin Enables CD8+ T Cells To Compete for the Memory Cell Niche. Journal of Immunology, 2010, 185, 4988-4992.	0.8	339
58	Multifactorial T-cell Hypofunction That Is Reversible Can Limit the Efficacy of Chimeric Antigen Receptor–Transduced Human T cells in Solid Tumors. Clinical Cancer Research, 2014, 20, 4262-4273.	7.0	339
59	Synergistic Reversal of Intrahepatic HCV-Specific CD8 T Cell Exhaustion by Combined PD-1/CTLA-4 Blockade. PLoS Pathogens, 2009, 5, e1000313.	4.7	322
60	Cutting Edge: Gut Microenvironment Promotes Differentiation of a Unique Memory CD8 T Cell Population. Journal of Immunology, 2006, 176, 2079-2083.	0.8	318
61	Opposing Functions of Interferon Coordinate Adaptive and Innate Immune Responses to Cancer Immune Checkpoint Blockade. Cell, 2019, 178, 933-948.e14.	28.9	301
62	CD8 T cell dysfunction during chronic viral infection. Current Opinion in Immunology, 2007, 19, 408-415.	5.5	297
63	CD39 Expression Identifies Terminally Exhausted CD8+ T Cells. PLoS Pathogens, 2015, 11, e1005177.	4.7	296
64	Cutting Edge: IL-12 Inversely Regulates T-bet and Eomesodermin Expression during Pathogen-Induced CD8+ T Cell Differentiation. Journal of Immunology, 2006, 177, 7515-7519.	0.8	291
65	The transcription factor BATF operates as an essential differentiation checkpoint in early effector CD8+ T cells. Nature Immunology, 2014, 15, 373-383.	14.5	289
66	Heterologous immunity provides a potent barrier to transplantation tolerance. Journal of Clinical Investigation, 2003, 111, 1887-1895.	8.2	283
67	Functional Restoration of HCV-Specific CD8 T Cells by PD-1 Blockade Is Defined by PD-1 Expression and Compartmentalization. Gastroenterology, 2008, 134, 1927-1937.e2.	1.3	263
68	T cell exhaustion during persistent viral infections. Virology, 2015, 479-480, 180-193.	2.4	251
69	Epigenomic-Guided Mass Cytometry Profiling Reveals Disease-Specific Features of Exhausted CD8ÂT Cells. Immunity, 2018, 48, 1029-1045.e5.	14.3	250
70	The microRNA miR-155 controls CD8+ T cell responses by regulating interferon signaling. Nature Immunology, 2013, 14, 593-602.	14.5	249
71	Bone Marrow Is a Preferred Site for Homeostatic Proliferation of Memory CD8 T Cells. Journal of Immunology, 2005, 174, 1269-1273.	0.8	248
72	Requirement for T-bet in the aberrant differentiation of unhelped memory CD8+ T cells. Journal of Experimental Medicine, 2007, 204, 2015-2021.	8.5	244

#	Article	IF	CITATIONS
73	Progressive Loss of Memory T Cell Potential and Commitment to Exhaustion during Chronic Viral Infection. Journal of Virology, 2012, 86, 8161-8170.	3.4	233
74	Viral antigen and extensive division maintain virus-specific CD8 T cells during chronic infection. Journal of Experimental Medicine, 2007, 204, 941-949.	8.5	231
75	Combination Cancer Therapies with Immune Checkpoint Blockade: Convergence on Interferon Signaling. Cell, 2016, 165, 272-275.	28.9	224
76	Costimulatory and Coinhibitory Receptor Pathways in Infectious Disease. Immunity, 2016, 44, 1052-1068.	14.3	213
77	Generation and maintenance of immunological memory. Seminars in Immunology, 2004, 16, 323-333.	5.6	212
78	IL-10, T cell exhaustion and viral persistence. Trends in Microbiology, 2007, 15, 143-146.	7.7	202
79	Enhancing therapeutic vaccination by blocking PD-1–mediated inhibitory signals during chronic infection. Journal of Experimental Medicine, 2008, 205, 543-555.	8.5	201
80	Adenoviral vectors persist in vivo and maintain activated CD8+ T cells: implications for their use as vaccines. Blood, 2007, 110, 1916-1923.	1.4	190
81	Behavior of Parasite-Specific Effector CD8+ T Cells in the Brain and Visualization of a Kinesis-Associated System of Reticular Fibers. Immunity, 2009, 30, 300-311.	14.3	184
82	The role of programming in memory T-cell development. Current Opinion in Immunology, 2004, 16, 217-225.	5.5	173
83	Dynamic Programmed Death 1 Expression by Virus-Specific CD8 T Cells Correlates With the Outcome of Acute Hepatitis B. Gastroenterology, 2008, 134, 1938-1949.e3.	1.3	152
84	Regulator of Fatty Acid Metabolism, Acetyl Coenzyme A Carboxylase 1, Controls T Cell Immunity. Journal of Immunology, 2014, 192, 3190-3199.	0.8	152
85	Deep immune profiling of MIS-C demonstrates marked but transient immune activation compared with adult and pediatric COVID-19. Science Immunology, 2021, 6, .	11.9	152
86	A Role for the Chemokine RANTES in Regulating CD8 T Cell Responses during Chronic Viral Infection. PLoS Pathogens, 2011, 7, e1002098.	4.7	151
87	Inhibitory Receptors on Lymphocytes: Insights from Infections. Journal of Immunology, 2012, 188, 2957-2965.	0.8	145
88	Cutting Edge: B Cell–Intrinsic T-bet Expression Is Required To Control Chronic Viral Infection. Journal of Immunology, 2016, 197, 1017-1022.	0.8	143
89	Cooperativity Between CD8+ T Cells, Non-Neutralizing Antibodies, and Alveolar Macrophages Is Important for Heterosubtypic Influenza Virus Immunity. PLoS Pathogens, 2013, 9, e1003207.	4.7	134
90	IL-25 simultaneously elicits distinct populations of innate lymphoid cells and multipotent progenitor type 2 (MPPtype2) cells. Journal of Experimental Medicine, 2013, 210, 1823-1837.	8.5	127

#	Article	IF	CITATIONS
91	Defective CD8 T Cell Responses in Aged Mice Are Due to Quantitative and Qualitative Changes in Virus-Specific Precursors. Journal of Immunology, 2012, 188, 1933-1941.	0.8	126
92	Impact of Epitope Escape on PD-1 Expression and CD8 T-Cell Exhaustion during Chronic Infection. Journal of Virology, 2009, 83, 4386-4394.	3.4	125
93	Role of PD-1 in regulating acute infections. Current Opinion in Immunology, 2010, 22, 397-401.	5.5	125
94	Increased Programmed Death-1 Expression on CD4+ T Cells in Cutaneous T-Cell Lymphoma. Archives of Dermatology, 2010, 146, 1382.	1.4	124
95	The diversity of costimulatory and inhibitory receptor pathways and the regulation of antiviral T cell responses. Current Opinion in Immunology, 2009, 21, 179-186.	5.5	122
96	Epigenetic scarring of exhausted T cells hinders memory differentiation upon eliminating chronic antigenic stimulation. Nature Immunology, 2021, 22, 1008-1019.	14.5	116
97	Strength of Stimulus and Clonal Competition Impact the Rate of Memory CD8 T Cell Differentiation. Journal of Immunology, 2007, 179, 6704-6714.	0.8	115
98	The Loss of TET2 Promotes CD8+ T Cell Memory Differentiation. Journal of Immunology, 2018, 200, 82-91.	0.8	112
99	Non-conventional Inhibitory CD4+Foxp3â^'PD-1hi T Cells as a Biomarker of Immune Checkpoint Blockade Activity. Cancer Cell, 2018, 33, 1017-1032.e7.	16.8	112
100	Tissue-Specific Differences in PD-1 and PD-L1 Expression during Chronic Viral Infection: Implications for CD8 T-Cell Exhaustion. Journal of Virology, 2010, 84, 2078-2089.	3.4	111
101	Perforin and IL-2 Upregulation Define Qualitative Differences among Highly Functional Virus-Specific Human CD8+ T Cells. PLoS Pathogens, 2010, 6, e1000798.	4.7	111
102	Differential Localization of T-bet and Eomes in CD8 T Cell Memory Populations. Journal of Immunology, 2013, 190, 3207-3215.	0.8	108
103	InÂvivo CD8+ TÂcell CRISPR screening reveals control by Fli1 in infection and cancer. Cell, 2021, 184, 1262-1280.e22.	28.9	107
104	Low CD8 T-Cell Proliferative Potential and High Viral Load Limit the Effectiveness of Therapeutic Vaccination. Journal of Virology, 2005, 79, 8960-8968.	3.4	106
105	TCR Signal Transduction in Antigen-Specific Memory CD8 T Cells. Journal of Immunology, 2003, 170, 5455-5463.	0.8	101
106	Changing immunodominance patterns in antiviral CD8 T-cell responses after loss of epitope presentation or chronic antigenic stimulation. Virology, 2003, 315, 93-102.	2.4	97
107	B Cell Antigen Presentation in the Initiation of Follicular Helper T Cell and Germinal Center Differentiation. Journal of Immunology, 2014, 192, 3607-3617.	0.8	96
108	Awakening the immune system with radiation: Optimal dose and fractionation. Cancer Letters, 2015, 368, 185-190.	7.2	91

#	Article	IF	CITATIONS
109	SnapShot: T Cell Exhaustion. Cell, 2015, 163, 1038-1038.e1.	28.9	88
110	Long-term outcomes of a phase I study of agonist CD40 antibody and CTLA-4 blockade in patients with metastatic melanoma. Oncolmmunology, 2018, 7, e1468956.	4.6	88
111	Neuropilin-1 is a T cell memory checkpoint limiting long-term antitumor immunity. Nature Immunology, 2020, 21, 1010-1021.	14.5	85
112	Long-Term Persistence of Exhausted CD8ÂT Cells in Chronic Infection Is Regulated by MicroRNA-155. Cell Reports, 2018, 23, 2142-2156.	6.4	84
113	A phase I trial of pembrolizumab with hypofractionated radiotherapy in patients with metastatic solid tumours. British Journal of Cancer, 2018, 119, 1200-1207.	6.4	83
114	Liver Environment and HCV Replication Affect Human T-Cell Phenotype and Expression of Inhibitory Receptors. Gastroenterology, 2014, 146, 550-561.	1.3	82
115	Persistent Enteric Murine Norovirus Infection Is Associated with Functionally Suboptimal Virus-Specific CD8 T Cell Responses. Journal of Virology, 2013, 87, 7015-7031.	3.4	79
116	Engagement of NKG2D on Bystander Memory CD8 T Cells Promotes Increased Immunopathology following Leishmania major Infection. PLoS Pathogens, 2014, 10, e1003970.	4.7	79
117	Bystander Chronic Infection Negatively Impacts Development of CD8+ T Cell Memory. Immunity, 2014, 40, 801-813.	14.3	78
118	Cutting Edge: Persistently Open Chromatin at Effector Gene Loci in Resting Memory CD8+ T Cells Independent of Transcriptional Status. Journal of Immunology, 2011, 186, 2705-2709.	0.8	74
119	The PD-1 Pathway Regulates Development and Function of Memory CD8+ T Cells following Respiratory Viral Infection. Cell Reports, 2020, 31, 107827.	6.4	72
120	Vaccine-elicited CD4 T cells induce immunopathology after chronic LCMV infection. Science, 2015, 347, 278-282.	12.6	71
121	miR-150 Regulates Memory CD8ÂT Cell Differentiation via c-Myb. Cell Reports, 2017, 20, 2584-2597.	6.4	70
122	MyD88 Plays a Critical T Cell-Intrinsic Role in Supporting CD8 T Cell Expansion during Acute Lymphocytic Choriomeningitis Virus Infection. Journal of Immunology, 2008, 181, 3804-3810.	0.8	69
123	Toll-like Receptor 7 Is Required for Effective Adaptive Immune Responses that Prevent Persistent Virus Infection. Cell Host and Microbe, 2012, 11, 643-653.	11.0	68
124	Protein Energy Malnutrition Impairs Homeostatic Proliferation of Memory CD8 T Cells. Journal of Immunology, 2012, 188, 77-84.	0.8	67
125	Increased T-bet is associated with senescence of influenza virus-specific CD8 T cells in aged humans. Journal of Leukocyte Biology, 2013, 93, 825-836.	3.3	66
126	Identification of an Evolutionarily Conserved Transcriptional Signature of CD8 Memory Differentiation That Is Shared by T and B Cells. Journal of Immunology, 2008, 181, 1859-1868.	0.8	65

#	Article	IF	CITATIONS
127	Cell-Intrinsic Defects in the Proliferative Response of Antiviral Memory CD8 T Cells in Aged Mice upon Secondary Infection. Journal of Immunology, 2010, 184, 5151-5159.	0.8	64
128	Targeting of antigen to the herpesvirus entry mediator augments primary adaptive immune responses. Nature Medicine, 2008, 14, 205-212.	30.7	60
129	Dysfunctional HIV-Specific CD8+ T Cell Proliferation Is Associated with Increased Caspase-8 Activity and Mediated by Necroptosis. Immunity, 2014, 41, 1001-1012.	14.3	60
130	Role of nuclear localization in the regulation and function of T-bet and Eomes in exhausted CD8 TÂcells. Cell Reports, 2021, 35, 109120.	6.4	60
131	T-cell exhaustion and residency dynamics inform clinical outcomes in hepatocellular carcinoma. Journal of Hepatology, 2022, 77, 397-409.	3.7	59
132	T-cell receptor signals direct the composition and function of the memory CD8+ T-cell pool. Blood, 2010, 116, 5548-5559.	1.4	57
133	Acquired transcriptional programming in functional and exhausted virus-specific CD8 T cells. Current Opinion in HIV and AIDS, 2012, 7, 50-57.	3.8	57
134	Type I Interferon Receptor Deficiency in Dendritic Cells Facilitates Systemic Murine Norovirus Persistence Despite Enhanced Adaptive Immunity. PLoS Pathogens, 2016, 12, e1005684.	4.7	56
135	An Interferon Paradox. Science, 2013, 340, 155-156.	12.6	55
136	Cutting Edge: CXCR4 Is Critical for CD8+ Memory T Cell Homeostatic Self-Renewal but Not Rechallenge Self-Renewal. Journal of Immunology, 2014, 193, 1013-1016.	0.8	53
137	Integrating Genomic Signatures for Immunologic Discovery. Immunity, 2010, 32, 152-161.	14.3	52
138	Inhibitory signaling sustains a distinct early memory CD8 ⁺ T cell precursor that is resistant to DNA damage. Science Immunology, 2021, 6, .	11.9	52
139	Transcription factor regulation of CD8 ⁺ Tâ€cell memory and exhaustion. Immunological Reviews, 2010, 236, 167-175.	6.0	51
140	AAV8 Induces Tolerance in Murine Muscle as a Result of Poor APC Transduction, T Cell Exhaustion, and Minimal MHCI Upregulation on Target Cells. Molecular Therapy, 2014, 22, 28-41.	8.2	50
141	CD4+ T Cell Differentiation in Chronic Viral Infections: The Tfh Perspective. Trends in Molecular Medicine, 2017, 23, 1072-1087.	6.7	50
142	Differentiation and Protective Capacity of Virus-Specific CD8+ T Cells Suggest Murine Norovirus Persistence in an Immune-Privileged Enteric Niche. Immunity, 2017, 47, 723-738.e5.	14.3	49
143	Elevated Expression of CD160 and 2B4 Defines a Cytolytic HIV-Specific CD8 ⁺ T-Cell Population in Elite Controllers. Journal of Infectious Diseases, 2015, 212, 1376-1386.	4.0	47
144	Optimized retroviral transduction of mouse T cells for in vivo assessment of gene function. Nature Protocols, 2017, 12, 1980-1998.	12.0	47

#	Article	IF	CITATIONS
145	Human epigenetic and transcriptional TÂcell differentiation atlas for identifying functional TÂcell-specific enhancers. Immunity, 2022, 55, 557-574.e7.	14.3	47
146	Turning on the off switch: Regulation of anti-viral T cell responses in the liver by the PD-1/PD-L1 pathway. Journal of Hepatology, 2006, 45, 468-472.	3.7	46
147	Hypogammaglobulinemia and exacerbated CD8 T-cell–mediated immunopathology in SAP-deficient mice with chronic LCMV infection mimics human XLP disease. Blood, 2006, 108, 3085-3093.	1.4	45
148	The long noncoding RNA <i>Morrbid</i> regulates CD8 T cells in response to viral infection. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11916-11925.	7.1	45
149	Dynamic decrease in PD-1 expression correlates with HBV-specific memory CD8 T-cell development in acute self-limited hepatitis B patients. Journal of Hepatology, 2009, 50, 1163-1173.	3.7	44
150	HIV-specific CD8 T cells express low levels of IL-7Rα: Implications for HIV-specific T cell memory. Virology, 2006, 353, 366-373.	2.4	43
151	A brief history of CD8 T cells. European Journal of Immunology, 2007, 37, S103-S110.	2.9	42
152	The contribution of epigenetic memory to immunologic memory. Current Opinion in Genetics and Development, 2011, 21, 154-159.	3.3	39
153	Pregnancy promotes tolerance to future offspring by programming selective dysfunction in long-lived maternal T cells. Journal of Leukocyte Biology, 2017, 101, 975-987.	3.3	39
154	Autoreactive CD8+ T cells are restrained by an exhaustion-like program that is maintained by LAG3. Nature Immunology, 2022, 23, 868-877.	14.5	32
155	De-Risking Immunotherapy: Report of a Consensus Workshop of the Cancer Immunotherapy Consortium of the Cancer Research Institute. Cancer Immunology Research, 2016, 4, 279-288.	3.4	29
156	Technical Advance: Fluorescent reporter reveals insights into eomesodermin biology in cytotoxic lymphocytes. Journal of Leukocyte Biology, 2013, 93, 307-315.	3.3	28
157	Diminished Primary CD8 T Cell Response to Viral Infection during Protein Energy Malnutrition in Mice Is Due to Changes in Microenvironment and Low Numbers of Viral-Specific CD8 T Cell Precursors3. Journal of Nutrition, 2008, 138, 806-812.	2.9	27
158	Memory T-Cell Heterogeneity and Terminology. Cold Spring Harbor Perspectives in Biology, 2021, 13, a037929.	5.5	26
159	Notâ€soâ€great expectations: reâ€assessing the essence of Tâ€cell memory. Immunological Reviews, 2006, 211, 203-213.	6.0	24
160	Editorial: Therapeutic potential of targeting BTLA. Journal of Leukocyte Biology, 2009, 86, 5-8.	3.3	20
161	Enhanced T Cell Function in a Mouse Model of Human Glycosylation. Journal of Immunology, 2013, 191, 228-237.	0.8	20
162	Loss of tonic T-cell receptor signals alters the generation but not the persistence of CD8+ memory T cells. Blood, 2010, 116, 5560-5570.	1.4	19

#	Article	IF	CITATIONS
163	Trib1 regulates T cell differentiation during chronic infection by restraining the effector program. Journal of Experimental Medicine, 2020, 217, .	8.5	15
164	TCF-1 Flips the Switch on Eomes. Immunity, 2010, 33, 145-147.	14.3	13
165	NFAT-dependent and -independent exhaustion circuits program maternal CD8 T cell hypofunction in pregnancy. Journal of Experimental Medicine, 2022, 219, .	8.5	13
166	CD8 ⁺ T Cell Exhaustion During Persistent Viral Infection is Regulated Independently of the Virus-Specific T Cell Receptor. Immunological Investigations, 2013, 42, 204-220.	2.0	10
167	Adaptive Immunity. , 2016, , 57-69.		9
168	A Cre-driven allele-conditioning line to interrogate CD4+ conventional TÂcells. Immunity, 2021, 54, 2209-2217.e6.	14.3	8
169	MicroRNA-29a attenuates CD8 T cell exhaustion and induces memory-like CD8 T cells during chronic infection. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2106083119.	7.1	7
170	Inhibitory receptors: whose side are they on?. Nature Immunology, 2007, 8, 1201-1203.	14.5	6
171	Combining Radiation with Immunotherapy: The University of Pennsylvania Experience. Seminars in Radiation Oncology, 2020, 30, 173-180.	2.2	6
172	Examining ageâ€related function and phenotype of influenzaâ€specific CD8+T cells in humans. FASEB Journal, 2008, 22, 857.15.	0.5	0
173	Immune Responses to Persistent Viruses. , 0, , 255-267.		Ο