
Laurel H Messer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1193652/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predicting optimal use of continuous glucose monitors in adolescents with type 1 diabetes: It's about benefit and burden. Journal of Pediatric Nursing, 2022, 62, 23-29.	1.5	4
2	Predicting Success with a First-Generation Hybrid Closed-Loop Artificial Pancreas System Among Children, Adolescents, and Young Adults with Type 1 Diabetes: A Model Development and Validation Study. Diabetes Technology and Therapeutics, 2022, 24, 157-166.	4.4	7
3	Evaluation of a New Clinical Tool to Enhance Clinical Care of Control-IQ Users. Journal of Diabetes Science and Technology, 2022, , 193229682210818.	2.2	0
4	Realâ€World Diabetes Technology: What Do We Have? Who Are We Missing?. Diabetes Technology and Therapeutics, 2022, 24, S-159-S-172.	4.4	0
5	Author's Response to Letter to the Editor by Scaramuzza AE, et al. Diabetes Technol Ther 2022;. Diabetes Technology and Therapeutics, 2022, , .	4.4	1
6	Clinical Management and Pump Parameter Adjustment of the Control-IQ Closed-Loop Control System: Results from a 6-Month, Multicenter, Randomized Clinical Trial. Diabetes Technology and Therapeutics, 2021, 23, 245-252.	4.4	13
7	Basalâ€ŀQ technology in the real world: satisfaction and reduction of diabetes burden in individuals with type 1 diabetes. Diabetic Medicine, 2021, 38, e14381.	2.3	13
8	Closed-Loop Insulin Therapy Improves Glycemic Control in Adolescents and Young Adults: Outcomes from the International Diabetes Closed-Loop Trial. Diabetes Technology and Therapeutics, 2021, 23, 342-349.	4.4	58
9	First Outpatient Evaluation of a Tubeless Automated Insulin Delivery System with Customizable Glucose Targets in Children and Adults with Type 1 Diabetes. Diabetes Technology and Therapeutics, 2021, 23, 410-424.	4.4	52
10	Initiating hybrid closed loop: A program evaluation of an <scp>educatorâ€led Controlâ€lQ</scp> followâ€up at a large pediatric clinic. Pediatric Diabetes, 2021, 22, 586-593.	2.9	11
11	Predictors of Time-in-Range (70–180 mg/dL) Achieved Using a Closed-Loop Control System. Diabetes Technology and Therapeutics, 2021, 23, 475-481.	4.4	36
12	Health-Related Quality of Life and Treatment Satisfaction in Parents and Children with Type 1 Diabetes Using Closed-Loop Control. Diabetes Technology and Therapeutics, 2021, 23, 401-409.	4.4	27
13	Realâ€world performance of hybrid closed loop in youth, young adults, adults and older adults with type 1 diabetes: Identifying a clinical target for hybrid closedâ€loop use. Diabetes, Obesity and Metabolism, 2021, 23, 2048-2057.	4.4	28
14	Practical Diabetes Technology: Overcoming Barriers in the Real World. Diabetes Technology and Therapeutics, 2021, 23, S-159-S-168.	4.4	3
15	Patient-Reported Outcomes in a Randomized Trial of Closed-Loop Control: The Pivotal International Diabetes Closed-Loop Trial. Diabetes Technology and Therapeutics, 2021, 23, 673-683.	4.4	30
16	Real-World Use of a New Hybrid Closed Loop Improves Glycemic Control in Youth with Type 1 Diabetes. Diabetes Technology and Therapeutics, 2021, 23, 837-843.	4.4	43
17	Multicenter Trial of a Tubeless, On-Body Automated Insulin Delivery System With Customizable Glycemic Targets in Pediatric and Adult Participants With Type 1 Diabetes. Diabetes Care, 2021, 44, 1630-1640.	8.6	133
18	Diabetes Technology Meeting 2020. Journal of Diabetes Science and Technology, 2021, 15, 916-960.	2.2	1

#	Article	IF	CITATIONS
19	Help when you need it: Perspectives of adults with T1D on the support and training they would have wanted when starting CGM. Diabetes Research and Clinical Practice, 2021, 180, 109048.	2.8	7
20	Barriers to Uptake of Insulin Technologies and Novel Solutions. Medical Devices: Evidence and Research, 2021, Volume 14, 339-354.	0.8	10
21	A Clinical Training Program for Hybrid Closed Loop Therapy in a Pediatric Diabetes Clinic. Journal of Diabetes Science and Technology, 2020, 14, 290-296.	2.2	25
22	Real world hybrid closedâ€loop discontinuation: Predictors and perceptions of youth discontinuing the 670G system in the first 6 months. Pediatric Diabetes, 2020, 21, 319-327.	2.9	110
23	Six months of hybrid closed loop in the realâ€world: An evaluation of children and young adults using the 670G system. Pediatric Diabetes, 2020, 21, 310-318.	2.9	106
24	Review of the Omnipod [®] 5 Automated Glucose Control System Powered by Horizon™ for the treatment of Type 1 diabetes. Therapeutic Delivery, 2020, 11, 507-519.	2.2	23
25	A clinical review of the t:slim X2 insulin pump. Expert Opinion on Drug Delivery, 2020, 17, 1675-1687.	5.0	19
26	Insulin dose optimization using an automated artificial intelligence-based decision support system in youths with type 1 diabetes. Nature Medicine, 2020, 26, 1380-1384.	30.7	127
27	Glycemic Outcomes of Use of CLC Versus PLGS in Type 1 Diabetes: A Randomized Controlled Trial. Diabetes Care, 2020, 43, 1822-1828.	8.6	34
28	Effect of Continuous Glucose Monitoring on Glycemic Control in Adolescents and Young Adults With Type 1 Diabetes. JAMA - Journal of the American Medical Association, 2020, 323, 2388.	7.4	238
29	Glucose Control During Physical Activity and Exercise Using Closed Loop Technology in Adults and Adolescents with Type 1 Diabetes. Canadian Journal of Diabetes, 2020, 44, 740-749.	0.8	46
30	Cost, Hassle, and On-Body Experience: Barriers to Diabetes Device Use in Adolescents and Potential Intervention Targets. Diabetes Technology and Therapeutics, 2020, 22, 760-767.	4.4	72
31	Practical Implementation of Diabetes Technology: Realâ€World Use. Diabetes Technology and Therapeutics, 2020, 22, S-119-S-129.	4.4	3
32	Randomized Controlled Trial of Mobile Closed-Loop Control. Diabetes Care, 2020, 43, 607-615.	8.6	40
33	Equipping School Health Personnel for Diabetes Care with a Competency Framework and Pilot Education Program. Journal of School Health, 2019, 89, 683-691.	1.6	8
34	Applying two minds theory to selfâ€management of Type 1 diabetes. Research in Nursing and Health, 2019, 42, 500-508.	1.6	3
35	MiniMed 670G hybrid closed loop artificial pancreas system for the treatment of type 1 diabetes mellitus: overview of its safety and efficacy. Expert Review of Medical Devices, 2019, 16, 845-853.	2.8	45
36	A Clinical Guide to Advanced Diabetes Devices and Closed-Loop Systems Using the CARES Paradigm. Diabetes Technology and Therapeutics, 2019, 21, 462-469.	4.4	71

#	Article	IF	CITATIONS
37	Closed loop control in adolescents and children during winter sports: Use of the Tandem Controlâ€lQ AP system. Pediatric Diabetes, 2019, 20, 759-768.	2.9	47
38	Artificial pancreas in pediatrics. , 2019, , 237-259.		1
39	Successful At-Home Use of the Tandem Control-IQ Artificial Pancreas System in Young Children During a Randomized Controlled Trial. Diabetes Technology and Therapeutics, 2019, 21, 159-169.	4.4	76
40	Factory-Calibrated Continuous Glucose Monitoring: How and Why It Works, and the Dangers of Reuse Beyond Approved Duration of Wear. Diabetes Technology and Therapeutics, 2019, 21, 222-229.	4.4	23
41	CGM Benefits and Burdens: Two Brief Measures of Continuous Glucose Monitoring. Journal of Diabetes Science and Technology, 2019, 13, 1135-1141.	2.2	33
42	Practical Implementation of Diabetes Technology: It Is Time. Diabetes Technology and Therapeutics, 2019, 21, S-148-S-159.	4.4	2
43	A Clinical Overview of Insulin Pump Therapy for the Management of Diabetes: Past, Present, and Future of Intensive Therapy. Diabetes Spectrum, 2019, 32, 194-204.	1.0	62
44	Fully Closed-Loop Multiple Model Probabilistic Predictive Controller Artificial Pancreas Performance in Adolescents and Adults in a Supervised Hotel Setting. Diabetes Technology and Therapeutics, 2018, 20, 335-343.	4.4	64
45	Optimizing Hybrid Closed-Loop Therapy in Adolescents and Emerging Adults Using the MiniMed 670G System. Diabetes Care, 2018, 41, 789-796.	8.6	101
46	Best friend or spy: a qualitative metaâ€synthesis on the impact of continuous glucose monitoring on life with Type 1 diabetes. Diabetic Medicine, 2018, 35, 409-418.	2.3	74
47	The dawn of automated insulin delivery: A new clinical framework to conceptualize insulin administration. Pediatric Diabetes, 2018, 19, 14-17.	2.9	23
48	Biopsychosocial Factors Associated With Satisfaction and Sustained Use of Artificial Pancreas Technology and Its Components: a Call to the Technology Field. Current Diabetes Reports, 2018, 18, 114.	4.2	30
49	Why Expectations Will Determine the Future of Artificial Pancreas. Diabetes Technology and Therapeutics, 2018, 20, S2-65-S2-68.	4.4	26
50	Preserving Skin Integrity with Chronic Device Use in Diabetes. Diabetes Technology and Therapeutics, 2018, 20, S2-54-S2-64.	4.4	72
51	A Clinical Training Program for Hybrid Closed-Loop Therapy in a Pediatric Diabetes Clinic. Diabetes, 2018, 67, .	0.6	1
52	Automated hybrid closed-loop control with a proportional-integral-derivative based system in adolescents and adults with type 1 diabetes: individualizing settings for optimal performance. Pediatric Diabetes, 2017, 18, 348-355.	2.9	46
53	In-home nighttime predictive low glucose suspend experience in children and adults with type 1 diabetes. Pediatric Diabetes, 2017, 18, 332-339.	2.9	12
54	Outpatient Closed-Loop Control with Unannounced Moderate Exercise in Adolescents Using Zone Model Predictive Control. Diabetes Technology and Therapeutics, 2017, 19, 331-339.	4.4	56

#	Article	IF	CITATIONS
55	Closed-Loop Control During Intense Prolonged Outdoor Exercise in Adolescents With Type 1 Diabetes: The Artificial Pancreas Ski Study. Diabetes Care, 2017, 40, 1644-1650.	8.6	130
56	Closed-Loop Control Without Meal Announcement in Type 1 Diabetes. Diabetes Technology and Therapeutics, 2017, 19, 527-532.	4.4	87
57	Ketone production in children with type 1 diabetes, ages 4-14 years, with and without nocturnal insulin pump suspension. Pediatric Diabetes, 2017, 18, 422-427.	2.9	10
58	Continuous Glucose Sensor Survival and Accuracy Over 14 Consecutive Days. Diabetes Care, 2016, 39, e112-e113.	8.6	8
59	Efficacy of an Overnight Predictive Low-Glucose Suspend System in Relation to Hypoglycemia Risk Factors in Youth and Adults With Type 1 Diabetes. Journal of Diabetes Science and Technology, 2016, 10, 1216-1221.	2.2	31
60	Early Detection of Infusion Set Failure During Insulin Pump Therapy in Type 1 Diabetes. Journal of Diabetes Science and Technology, 2016, 10, 1268-1276.	2.2	37
61	Duration of Infusion Set Survival in Lipohypertrophy Versus Nonlipohypertrophied Tissue in Patients with Type 1 Diabetes. Diabetes Technology and Therapeutics, 2016, 18, 429-435.	4.4	27
62	Factors Associated with Nocturnal Hypoglycemia in At-Risk Adolescents and Young Adults with Type 1 Diabetes. Diabetes Technology and Therapeutics, 2015, 17, 385-391.	4.4	43
63	Effect of Acetaminophen on CGM Glucose in an Outpatient Setting. Diabetes Care, 2015, 38, e158-e159.	8.6	73
64	Effect of Lipohypertrophy on Accuracy of Continuous Glucose Monitoring in Patients With Type 1 Diabetes. Diabetes Care, 2015, 38, e166-e167.	8.6	17
65	A Novel Method to Detect Pressure-Induced Sensor Attenuations (PISA) in an Artificial Pancreas. Journal of Diabetes Science and Technology, 2014, 8, 1091-1096.	2.2	64
66	Multicenter Closed-Loop/Hybrid Meal Bolus Insulin Delivery with Type 1 Diabetes. Diabetes Technology and Therapeutics, 2014, 16, 623-632.	4.4	38
67	The Increasing Onset of Type 1 Diabetes in Children. Journal of Pediatrics, 2012, 161, 652-657.e1.	1.8	42
68	Preventing Post-Exercise Nocturnal Hypoglycemia in Children with Type 1 Diabetes. Journal of Pediatrics, 2010, 157, 784-788.e1.	1.8	98
69	Missed Insulin Boluses for Snacks in Youth With Type 1 Diabetes. Diabetes Care, 2010, 33, 507-508.	8.6	38
70	Timing of Meal Insulin Boluses to Achieve Optimal Postprandial Glycemic Control in Patients with Type 1 Diabetes. Diabetes Technology and Therapeutics, 2010, 12, 173-177.	4.4	121
71	Continuous Glucose Monitoring in Youth with Type 1 Diabetes. Diabetes Technology and Therapeutics, 2009, 11, S-83-S-91.	4.4	31
72	Educating Families on Real Time Continuous Glucose Monitoring. The Diabetes Educator, 2009, 35, 124-135.	2.5	34

#	Article	IF	CITATIONS
73	A Pilot Trial of Pramlintide Home Usage in Adolescents With Type 1 Diabetes. Pediatrics, 2009, 124, 1344-1347.	2.1	20
74	Relative Inaccuracy of the A1cNow in Children With Type 1 Diabetes. Diabetes Care, 2007, 30, 135-137.	8.6	7
75	Genetic Mapping of a Mouse Modifier Gene That Can Prevent ALS Onset. Genomics, 2000, 70, 181-189.	2.9	57