Jouni Hirvonen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11929286/publications.pdf

Version: 2024-02-01

175	11,978	62 h-index	101
papers	citations		g-index
176	176	176	12883
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials, 2005, 26, 3055-3064.	11.4	594
2	Mesoporous Silicon in Drug Delivery Applications. Journal of Pharmaceutical Sciences, 2008, 97, 632-653.	3.3	398
3	Biocompatibility of Thermally Hydrocarbonized Porous Silicon Nanoparticles and their Biodistribution in Rats. ACS Nano, 2010, 4, 3023-3032.	14.6	316
4	Pharmaceutical nanocrystals by nanomilling: critical process parameters, particle fracturing and stabilization methods. Journal of Pharmacy and Pharmacology, 2010, 62, 1569-1579.	2.4	296
5	InÂvitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells. Biomaterials, 2017, 121, 97-108.	11.4	296
6	The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chemical Society Reviews, 2020, 49, 1253-1321.	38.1	261
7	Nanofibrillar cellulose films for controlled drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 82, 308-315.	4.3	220
8	Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. European Journal of Pharmaceutical Sciences, 2013, 50, 69-77.	4.0	209
9	Nanosuspensions of poorly soluble drugs: Preparation and development by wet milling. International Journal of Pharmaceutics, 2011, 411, 215-222.	5.2	181
10	Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin. Journal of Controlled Release, 2016, 232, 29-41.	9.9	168
11	Stabilizing Agents for Drug Nanocrystals: Effect on Bioavailability. Pharmaceutics, 2016, 8, 16.	4.5	161
12	In vitro cytotoxicity of porous silicon microparticles: Effect of the particle concentration, surface chemistry and size. Acta Biomaterialia, 2010, 6, 2721-2731.	8.3	158
13	Drug permeation across intestinal epithelial cells using porous silicon nanoparticles. Biomaterials, 2011, 32, 2625-2633.	11.4	157
14	Porous silicon nanoparticles for nanomedicine: preparation and biomedical applications. Nanomedicine, 2014, 9, 535-554.	3.3	155
15	Binding and release of drugs into and from thermosensitive poly(N-vinyl caprolactam) nanoparticles. European Journal of Pharmaceutical Sciences, 2002, 16, 69-74.	4.0	150
16	Intravenous Delivery of Hydrophobin-Functionalized Porous Silicon Nanoparticles: Stability, Plasma Protein Adsorption and Biodistribution. Molecular Pharmaceutics, 2012, 9, 654-663.	4.6	146
17	Drug Delivery Formulations of Ordered and Nonordered Mesoporous Silica: Comparison of Three Drug Loading Methods. Journal of Pharmaceutical Sciences, 2011, 100, 3294-3306.	3.3	144
18	Spray-dried nanofibrillar cellulose microparticles for sustained drug release. International Journal of Pharmaceutics, 2012, 430, 47-55.	5.2	144

#	Article	IF	Citations
19	Co-delivery of a hydrophobic small molecule and a hydrophilic peptide by porous silicon nanoparticles. Journal of Controlled Release, 2013, 170, 268-278.	9.9	141
20	Fabrication of a Multifunctional Nanoâ€inâ€micro Drug Delivery Platform by Microfluidic Templated Encapsulation of Porous Silicon in Polymer Matrix. Advanced Materials, 2014, 26, 4497-4503.	21.0	138
21	Expression and Characterization of Recombinant Human UDP-glucuronosyltransferases (UGTs). Journal of Biological Chemistry, 2003, 278, 3536-3544.	3.4	134
22	Electrospray Encapsulation of Hydrophilic and Hydrophobic Drugs in Poly(<scp>L</scp> ″actic acid) Nanoparticles. Small, 2009, 5, 1791-1798.	10.0	134
23	Microfluidic assisted one-step fabrication of porous silicon@acetalated dextran nanocomposites for precisely controlled combination chemotherapy. Biomaterials, 2015, 39, 249-259.	11.4	133
24	Failure of MTT as a Toxicity Testing Agent for Mesoporous Silicon Microparticles. Chemical Research in Toxicology, 2007, 20, 1913-1918.	3.3	129
25	Immobilization of protein-coated drug nanoparticles in nanofibrillar cellulose matrices—Enhanced stability and release. Journal of Controlled Release, 2011, 156, 390-397.	9.9	128
26	Comparison of mesoporous silicon and non-ordered mesoporous silica materials as drug carriers for itraconazole. International Journal of Pharmaceutics, 2011, 414, 148-156.	5.2	124
27	Electrospraying, spray drying and related techniques for production and formulation of drug nanoparticles. Expert Opinion on Drug Delivery, 2010, 7, 705-719.	5.0	123
28	Core/Shell Nanocomposites Produced by Superfast Sequential Microfluidic Nanoprecipitation. Nano Letters, 2017, 17, 606-614.	9.1	123
29	Microfluidic assembly of a nano-in-micro dual drug delivery platform composed of halloysite nanotubes and a pH-responsive polymer for colon cancer therapy. Acta Biomaterialia, 2017, 48, 238-246.	8.3	109
30	Amine Modification of Thermally Carbonized Porous Silicon with Silane Coupling Chemistry. Langmuir, 2012, 28, 14045-14054.	3.5	108
31	Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors. Nanoscale, 2014, 6, 10377-10387.	5.6	108
32	Spray-Dried Cellulose Nanofibers as Novel Tablet Excipient. AAPS PharmSciTech, 2011, 12, 1366-1373.	3.3	105
33	Microfluidic Assembly of Monodisperse Multistage pHâ€Responsive Polymer/Porous Silicon Composites for Precisely Controlled Multiâ€Drug Delivery. Small, 2014, 10, 2029-2038.	10.0	105
34	The Behavior of Sorbitan Surfactants at the Water–Oil Interface: Straight-Chained Hydrocarbons from Pentane to Dodecane as an Oil Phase. Journal of Colloid and Interface Science, 2001, 240, 272-276.	9.4	104
35	Dissolution Studies of Poorly Soluble Drug Nanosuspensions in Non-sink Conditions. AAPS PharmSciTech, 2013, 14, 748-756.	3.3	103
36	Drug nanocrystals – Versatile option for formulation of poorly soluble materials. International Journal of Pharmaceutics, 2018, 537, 73-83.	5.2	103

#	Article	IF	Citations
37	Brinzolamide nanocrystal formulations for ophthalmic delivery: Reduction of elevated intraocular pressure in vivo. International Journal of Pharmaceutics, 2014, 467, 34-41.	5. 2	99
38	Multifunctional Porous Silicon for Therapeutic Drug Delivery and Imaging. Current Drug Discovery Technologies, 2011, 8, 228-249.	1.2	97
39	Functionalization of carboxylated lignin nanoparticles for targeted and pH-responsive delivery of anticancer drugs. Nanomedicine, 2017, 12, 2581-2596.	3.3	96
40	Thiolation and Cellâ€Penetrating Peptide Surface Functionalization of Porous Silicon Nanoparticles for Oral Delivery of Insulin. Advanced Functional Materials, 2016, 26, 3405-3416.	14.9	94
41	Drug release characteristics of physically crossâ€linked thermosensitive poly(Nâ€vinylcaprolactam) hydrogel particles. Journal of Pharmaceutical Sciences, 2008, 97, 4783-4793.	3.3	93
42	Development of LC/MS/MS Methods for Cocktail Dosed Caco-2 Samples Using Atmospheric Pressure Photoionization and Electrospray Ionization. Analytical Chemistry, 2003, 75, 5969-5977.	6.5	87
43	In Situ Measurement of Solvent-Mediated Phase Transformations During Dissolution Testing. Journal of Pharmaceutical Sciences, 2006, 95, 2730-2737.	3.3	87
44	Cytotoxicity study of ordered mesoporous silica MCM-41 and SBA-15 microparticles on Caco-2 cells. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 74, 483-494.	4.3	87
45	Multifaceted polymersome platforms: Spanning from self-assembly to drug delivery and protocells. Progress in Polymer Science, 2016, 60, 51-85.	24.7	87
46	KINETIC CHARACTERIZATION OF THE 1A SUBFAMILY OF RECOMBINANT HUMAN UDP-GLUCURONOSYLTRANSFERASES. Drug Metabolism and Disposition, 2005, 33, 1017-1026.	3.3	85
47	Enhanced in vitro permeation of furosemide loaded into thermally carbonized mesoporous silicon (TCPSi) microparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 66, 348-356.	4.3	83
48	Drugâ€Loaded Multifunctional Nanoparticles Targeted to the Endocardial Layer of the Injured Heart Modulate Hypertrophic Signaling. Small, 2017, 13, 1701276.	10.0	82
49	Multistage pH-responsive mucoadhesive nanocarriers prepared by aerosol flow reactor technology: A controlled dual protein-drug delivery system. Biomaterials, 2015, 68, 9-20.	11.4	77
50	Rheological properties of creams with four different surfactant combinations - effect of storage time and conditions. International Journal of Pharmaceutics, 2001, 221, 187-196.	5.2	76
51	Ion-exchange fibers and drugs: an equilibrium study. Journal of Controlled Release, 2001, 70, 219-229.	9.9	76
52	Microfluidic assembly of multistage porous silicon–lipid vesicles for controlled drug release. Lab on A Chip, 2014, 14, 1083-1086.	6.0	75
53	Microfluidics as a cutting-edge technique for drug delivery applications. Journal of Drug Delivery Science and Technology, 2016, 34, 76-87.	3.0	75
54	Controlled transdermal iontophoresis by ion-exchange fiber. Journal of Controlled Release, 2000, 67, 179-190.	9.9	73

#	Article	IF	Citations
55	Nanostructured Porous Siliconâ€Solid Lipid Nanocomposite: Towards Enhanced Cytocompatibility and Stability, Reduced Cellular Association, and Prolonged Drug Release. Advanced Functional Materials, 2013, 23, 1893-1902.	14.9	72
56	Delivery of therapeutics with nanoparticles: what's new in cancer immunotherapy?. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1421.	6.1	72
57	Peptide-guided resiquimod-loaded lignin nanoparticles convert tumor-associated macrophages from M2 to M1 phenotype for enhanced chemotherapy. Acta Biomaterialia, 2021, 133, 231-243.	8.3	72
58	In vitro toxicity and permeation of cyclodextrins in Calu-3 cells. Journal of Controlled Release, 2008, 126, 10-16.	9.9	71
59	Functional hydrophobin-coating of thermally hydrocarbonized porous silicon microparticles. Biomaterials, 2011, 32, 9089-9099.	11.4	71
60	Inhibition of Influenza A Virus Infection <i>in Vitro</i> by Saliphenylhalamide-Loaded Porous Silicon Nanoparticles. ACS Nano, 2013, 7, 6884-6893.	14.6	71
61	lontophoretic delivery across the skin: electroosmosis and its modulation by drug substances. , 1997, 14, 1258-1263.		70
62	¹⁸ F-Labeled Modified Porous Silicon Particles for Investigation of Drug Delivery Carrier Distribution in Vivo with Positron Emission Tomography. Molecular Pharmaceutics, 2011, 8, 1799-1806.	4.6	65
63	Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regeneration. International Journal of Pharmaceutics, 2018, 536, 241-250.	5.2	65
64	Cellular interactions of surface modified nanoporous silicon particles. Nanoscale, 2012, 4, 3184.	5.6	63
65	Nanocrystal-based per-oral itraconazole delivery: Superior in vitro dissolution enhancement versus Sporanox® is not realized in in vivo drug absorption. Journal of Controlled Release, 2014, 180, 109-116.	9.9	63
66	Transdermal delivery of peptides by iontophoresis. Nature Biotechnology, 1996, 14, 1710-1713.	17. 5	62
67	The effect of cosolvents on the formulation of nanoparticles from low-molecular-weight poly(I)lactide. AAPS PharmSciTech, 2002, 3, E32.	3.3	62
68	Interactions with other human UDP-glucuronosyltransferases attenuate the consequences of the Y485D mutation on the activity and substrate affinity of UGT1A6. Pharmacogenetics and Genomics, 2007, 17, 115-126.	1.5	61
69	Onâ€Chip Selfâ€Assembly of a Smart Hybrid Nanocomposite for Antitumoral Applications. Advanced Functional Materials, 2015, 25, 1488-1497.	14.9	60
70	Dualâ€Drug Delivery Using Dextranâ€Functionalized Nanoparticles Targeting Cardiac Fibroblasts for Cellular Reprogramming. Advanced Functional Materials, 2018, 28, 1705134.	14.9	60
71	Dodecyl N,N-dimethylamino acetate and azone enhance drug penetration across human, snake, and rabbit skin. Pharmaceutical Research, 1991, 08, 933-937.	3.5	59
72	Improved stability and release control of levodopa and metaraminol using ion-exchange fibers and transdermal iontophoresis. European Journal of Pharmaceutical Sciences, 2002, 16, 273-280.	4.0	58

#	Article	IF	CITATIONS
7 3	Preparation and Characterization of Dentin Phosphophorynâ€Derived Peptideâ€Functionalized Lignin Nanoparticles for Enhanced Cellular Uptake. Small, 2019, 15, e1901427.	10.0	57
74	Fabrication and Characterization of Drug-Loaded Conductive Poly(glycerol) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 Materials & Samp; Interfaces, 2020, 12, 6899-6909.	707 Td (s 8.0	sebacate)/Nan 57
7 5	Cyclodextrin-Modified Porous Silicon Nanoparticles for Efficient Sustained Drug Delivery and Proliferation Inhibition of Breast Cancer Cells. ACS Applied Materials & Interfaces, 2015, 7, 23197-23204.	8.0	55
76	Transdermal iontophoresis of tacrine in vivo. Pharmaceutical Research, 2002, 19, 705-708.	3.5	54
77	Nanostructured porous silicon in preclinical imaging: Moving from bench to bedside. Journal of Materials Research, 2013, 28, 152-164.	2.6	54
78	A prospective cancer chemo-immunotherapy approach mediated by synergistic CD326 targeted porous silicon nanovectors. Nano Research, 2015, 8, 1505-1521.	10.4	54
79	Biomimetic Engineering Using Cancer Cell Membranes for Designing Compartmentalized Nanoreactors with Organelle‣ike Functions. Advanced Materials, 2017, 29, 1605375.	21.0	54
80	Engineered Multifunctional Albuminâ€Decorated Porous Silicon Nanoparticles for FcRn Translocation of Insulin. Small, 2018, 14, e1800462.	10.0	53
81	Multifunctional 3Dâ€Printed Patches for Longâ€Term Drug Release Therapies after Myocardial Infarction. Advanced Functional Materials, 2020, 30, 2003440.	14.9	53
82	Evaluation of drug interactions with nanofibrillar cellulose. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 1238-1244.	4.3	52
83	Delivery and stability of LHRH and Nafarelin in human skin: the effect of constant/pulsed iontophoresis. European Journal of Pharmaceutical Sciences, 2004, 21, 371-377.	4.0	51
84	Physicochemical stability of high indomethacin payload ordered mesoporous silica MCM-41 and SBA-15 microparticles. International Journal of Pharmaceutics, 2011, 416, 242-51.	5.2	50
85	Solvent-Mediated Solid Phase Transformations of cArbamazepine: Effects of Simulated Intestinal Fluid and Fasted State Simulated Intestinal Fluid. Journal of Pharmaceutical Sciences, 2009, 98, 985-996.	3.3	49
86	Nanostructured porous silicon materials: potential candidates for improving drug delivery. Nanomedicine, 2012, 7, 1281-1284.	3.3	49
87	Quercetinâ€Based Modified Porous Silicon Nanoparticles for Enhanced Inhibition of Doxorubicinâ€Resistant Cancer Cells. Advanced Healthcare Materials, 2017, 6, 1601009.	7.6	49
88	Microfluidics platform for glass capillaries and its application in droplet and nanoparticle fabrication. International Journal of Pharmaceutics, 2017, 516, 100-105.	5.2	47
89	Microfluidic Nanoassembly of Bioengineered Chitosan-Modified FcRn-Targeted Porous Silicon Nanoparticles @ Hypromellose Acetate Succinate for Oral Delivery of Antidiabetic Peptides. ACS Applied Materials & Interfaces, 2018, 10, 44354-44367.	8.0	47
90	Microfluidic Templated Mesoporous Silicon–Solid Lipid Microcomposites for Sustained Drug Delivery. ACS Applied Materials & Interfaces, 2013, 5, 12127-12134.	8.0	45

#	Article	IF	Citations
91	pHâ€6witch Nanoprecipitation of Polymeric Nanoparticles for Multimodal Cancer Targeting and Intracellular Triggered Delivery of Doxorubicin. Advanced Healthcare Materials, 2016, 5, 1904-1916.	7.6	44
92	Oral hypoglycaemic effect of GLP-1 and DPP4 inhibitor based nanocomposites in a diabetic animal model. Journal of Controlled Release, 2016, 232, 113-119.	9.9	44
93	A Versatile Carbonic Anhydrase IX Targeting Ligand-Functionalized Porous Silicon Nanoplatform for Dual Hypoxia Cancer Therapy and Imaging. ACS Applied Materials & Samp; Interfaces, 2017, 9, 13976-13987.	8.0	44
94	The interactions between the N-terminal and C-terminal domains of the human UDP-glucuronosyltransferases are partly isoform-specific, and may involve both monomers. Biochemical Pharmacology, 2004, 68, 2443-2450.	4.4	42
95	Poly(methyl vinyl etherâ€ <i>alt</i> å€maleic acid)â€Functionalized Porous Silicon Nanoparticles for Enhanced Stability and Cellular Internalization. Macromolecular Rapid Communications, 2014, 35, 624-629.	3.9	42
96	A Nanoâ€inâ€Nano Vector: Merging the Best of Polymeric Nanoparticles and Drug Nanocrystals. Advanced Functional Materials, 2017, 27, 1604508.	14.9	42
97	Dual-peptide functionalized acetalated dextran-based nanoparticles for sequential targeting of macrophages during myocardial infarction. Nanoscale, 2020, 12, 2350-2358.	5.6	42
98	Cell–polymer interactions of fluorescent polystyrene latex particles coated with thermosensitive poly(N-isopropylacrylamide) and poly(N-vinylcaprolactam) or grafted with poly(ethylene) Tj ETQq0 0 0 rgBT /Ove	rlo s.l 210 T	f 5 @ 1457 Td (
99	Intact Nanoparticulate Indomethacin in Fast-Dissolving Carrier Particles by Combined Wet Milling and Aerosol Flow Reactor Methods. Pharmaceutical Research, 2011, 28, 2403-2411.	3.5	41
100	Surface modification of acetaminophen particles by atomic layer deposition. International Journal of Pharmaceutics, 2017, 525, 160-174.	5.2	40
101	Toxicological Profile of Therapeutic Nanodelivery Systems. Current Drug Metabolism, 2012, 13, 1068-1086.	1.2	39
102	High drug-loaded microspheres enabled by controlled in-droplet precipitation promote functional recovery after spinal cord injury. Nature Communications, 2022, 13, 1262.	12.8	39
103	Electrochemical characterization of human skin by impedance spectroscopy: the effect of penetration enhancers. Pharmaceutical Research, 1993, 10, 381-385.	3.5	38
104	Dissolution study of nanocrystal powders of a poorly soluble drug by UV imaging and channel flow methods. European Journal of Pharmaceutical Sciences, 2013, 50, 511-519.	4.0	38
105	Systematic inÂvitro and inÂvivo study on porous silicon to improve the oral bioavailability of celecoxib. Biomaterials, 2015, 52, 44-55.	11.4	38
106	Safety and toxicity concerns of orally delivered nanoparticles as drug carriers. Expert Opinion on Drug Metabolism and Toxicology, 2015, 11, 381-393.	3.3	38
107	Interaction Studies Between Indomethacin Nanocrystals and PEO/PPO Copolymer Stabilizers. Pharmaceutical Research, 2015, 32, 628-639.	3.5	38
108	New times, new trends for ethionamide: In vitro evaluation of drug-loaded thermally carbonized porous silicon microparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81, 314-323.	4.3	37

#	Article	IF	Citations
109	N-in-one permeability studies of heterogeneous sets of compounds across Caco-2 cell monolayers. Pharmaceutical Research, 2003, 20, 187-197.	3.5	36
110	Evaluation of cocktail approach to standardise Caco-2 permeability experiments. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 64, 379-387.	4.3	35
111	Multifunctional Nanotube–Mucoadhesive Poly(methyl vinyl etherâ€ <i>co</i> â€maleic) Tj ETQq1 1 0.784314 n Delivery. Advanced Healthcare Materials, 2017, 6, 1700629.	gBT /Over 7.6	lock 10 Tf 50 35
112	Improved entrapment efficiency of hydrophilic drug substance during nanoprecipitation of poly(I)lactide nanoparticles. AAPS PharmSciTech, 2004, 5, 115-120.	3.3	35
113	Quantitative determination of drug encapsulation in poly(lactic acid) nanoparticles by capillary electrophoresis. Journal of Chromatography A, 2008, 1178, 248-255.	3.7	34
114	Rheological properties of three component creams containing sorbitan monoesters as surfactants. International Journal of Pharmaceutics, 2002, 247, 103-114.	5.2	33
115	Platelet Lysate-Modified Porous Silicon Microparticles for Enhanced Cell Proliferation in Wound Healing Applications. ACS Applied Materials & Samp; Interfaces, 2016, 8, 988-996.	8.0	33
116	Physicochemical Characterization of Nano- and Microparticles. Current Nanoscience, 2008, 4, 101-107.	1.2	32
117	Nanoparticles containing ketoprofen and acrylic polymers prepared by an aerosol flow reactor method. AAPS PharmSciTech, 2004, 5, 129-137.	3.3	31
118	Tablet preformulations of indomethacin-loaded mesoporous silicon microparticles. International Journal of Pharmaceutics, 2012, 422, 125-131.	5.2	31
119	Intracellular responsive dual delivery by endosomolytic polyplexes carrying DNA anchored porous silicon nanoparticles. Journal of Controlled Release, 2017, 249, 111-122.	9.9	31
120	Confinement Effects on Drugs in Thermally Hydrocarbonized Porous Silicon. Langmuir, 2014, 30, 2196-2205.	3.5	30
121	Production, applications and inÂvivo fate of drug nanocrystals. Journal of Drug Delivery Science and Technology, 2016, 34, 21-31.	3.0	30
122	Bridging the Knowledge of Different Worlds to Understand the Big Picture of Cancer Nanomedicines. Advanced Healthcare Materials, 2018, 7, 1700432.	7.6	30
123	Freeze-Drying of Low Molecular Weight Poly(L-lactic acid) Nanoparticles: Effect of Cryo- and Lyoprotectants. Journal of Nanoscience and Nanotechnology, 2006, 6, 3110-3117.	0.9	29
124	Cardiac Actions of a Small Molecule Inhibitor Targeting GATA4–NKX2-5 Interaction. Scientific Reports, 2018, 8, 4611.	3.3	29
125	Transdermal penetration enhancers in rabbit pinna skin: Duration of action, skin irritation, and in vivo/in vitro comparison. International Journal of Pharmaceutics, 1993, 99, 253-261.	5.2	28
126	Transdermal iontophoresis of sotalol and salicylate; the effect of skin charge and penetration enhancers. Journal of Controlled Release, 1993, 26, 109-117.	9.9	28

#	Article	IF	Citations
127	Rate and extent of ion-exchange process: the effect of physico-chemical characteristics of salicylate anions. Journal of Controlled Release, 2003, 91, 449-463.	9.9	27
128	Influence of lipids on the mannitol flux during transdermal iontophoresis in vitro. European Journal of Pharmaceutical Sciences, 2000, 10, 97-102.	4.0	26
129	Dissolution testing of acetylsalicylic acid by a channel flow methodâ€"correlation to USP basket and intrinsic dissolution methods. European Journal of Pharmaceutical Sciences, 2003, 19, 395-401.	4.0	26
130	In vitro assessment of biopolymer-modified porous silicon microparticles for wound healing applications. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 635-642.	4.3	25
131	Influence of Surface Chemistry on Ibuprofen Adsorption and Confinement in Mesoporous Silicon Microparticles. Langmuir, 2016, 32, 13020-13029.	3.5	25
132	The Expression of Most UDP-Glucuronosyltransferases (UGTs) Is Increased Significantly during Caco-2 Cell Differentiation, whereas UGT1A6 Is Highly Expressed Also in Undifferentiated Cells. Drug Metabolism and Disposition, 2008, 36, 2331-2336.	3.3	24
133	Solid formulations by a nanocrystal approach: Critical process parameters regarding scale-ability of nanocrystals for tableting applications. International Journal of Pharmaceutics, 2015, 485, 77-86.	5.2	24
134	Mesoporous Materials and Nanocrystals for Enhancing the Dissolution Behavior of Poorly Water-soluble Drugs. Current Pharmaceutical Biotechnology, 2014, 14, 926-938.	1.6	24
135	Engineered antibody-functionalized porous silicon nanoparticles for therapeutic targeting of pro-survival pathway in endogenous neuroblasts after stroke. Biomaterials, 2020, 227, 119556.	11.4	23
136	Neonatal Fc receptor-targeted lignin-encapsulated porous silicon nanoparticles for enhanced cellular interactions and insulin permeation across the intestinal epithelium. Bioactive Materials, 2022, 9, 299-315.	15.6	23
137	An Active and Water-Soluble Truncation Mutant of the Human UDP-Glucuronosyltransferase 1A9. Molecular Pharmacology, 2004, 65, 826-831.	2.3	22
138	Coated particle assemblies for the concomitant pulmonary administration of budesonide and salbutamol sulphate. International Journal of Pharmaceutics, 2013, 441, 248-254.	5.2	22
139	Nanosuspensions of a poorly soluble investigational molecule ODM-106: Impact of milling bead diameter and stabilizer concentration. International Journal of Pharmaceutics, 2020, 587, 119636.	5.2	22
140	Microfluidics Fabrication of Micrometerâ€Sized Hydrogels with Precisely Controlled Geometries for Biomedical Applications. Advanced Healthcare Materials, 2022, 11, .	7.6	22
141	Impact of Pore Size and Surface Chemistry of Porous Silicon Particles and Structure of Phospholipids on Their Interactions. ACS Biomaterials Science and Engineering, 2018, 4, 2308-2313.	5.2	21
142	Mechanistic evaluation of factors affecting compound loading into ion-exchange fibers. European Journal of Pharmaceutical Sciences, 2007, 31, 306-317.	4.0	20
143	Simultaneous measurement of liquid-phase and solid-phase transformation kinetics in rotating disc and channel flow cell dissolution devices. International Journal of Pharmaceutics, 2008, 363, 66-72.	5.2	18
144	Effects of Cell Differentiation and Assay Conditions on the UDP-Glucuronosyltransferase Activity in Caco-2 Cells. Drug Metabolism and Disposition, 2011, 39, 456-464.	3.3	18

#	Article	IF	Citations
145	Experimental verification of the mechanistic model for transdermal transport including iontophoresis. Journal of Controlled Release, 1998, 56, 169-174.	9.9	17
146	Aerosolization, Drug Permeation and Cellular Interaction of Dry Powder Pulmonary Formulations of Corticosteroids with Hydroxypropyl-β-Cyclodextrin as a Solubilizer. Pharmaceutical Research, 2017, 34, 25-35.	3.5	17
147	Formation and characterization of three-component-sorbitan monoester surfactant, oil and water-creams. International Journal of Pharmaceutics, 2004, 269, 227-239.	5.2	16
148	lon-exchange and iontophoresis-controlled delivery of apomorphine. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 83, 477-484.	4.3	16
149	Superfast and controllable microfluidic inking of anti-inflammatory melanin-like nanoparticles inspired by cephalopods. Materials Horizons, 2020, 7, 1573-1580.	12.2	16
150	A multifunctional nanocomplex for enhanced cell uptake, endosomal escape and improved cancer therapeutic effect. Nanomedicine, 2017, 12, 1401-1420.	3.3	15
151	Prospective Cancer Therapies Using Stimuliâ€Responsive DNA Nanostructures. Macromolecular Bioscience, 2021, 21, e2100272.	4.1	15
152	Controlled transdermal delivery of leuprorelin by pulsed iontophoresis and ion-exchange fiber. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 594-601.	4.3	14
153	Drug permeation and cellular interaction of amino acid-coated drug combination powders for pulmonary delivery. International Journal of Pharmaceutics, 2016, 504, 89-97.	5.2	13
154	Microparticles to enhance delivery of drugs and growth factors into wound sites. Therapeutic Delivery, 2016, 7, 711-732.	2.2	13
155	Investigation of silicon nanoparticles produced by centrifuge chemical vapor deposition for applications in therapy and diagnostics. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 254-265.	4.3	13
156	In Vitro Evaluation of the Therapeutic Effects of Dualâ€Drug Loaded Spermineâ€Acetalated Dextran Nanoparticles Coated with Tannic Acid for Cardiac Applications. Advanced Functional Materials, 2022, 32, 2109032.	14.9	13
157	Inorganic Nanoparticles in Targeted Drug Delivery and Imaging. Advances in Delivery Science and Technology, 2015, , 571-613.	0.4	12
158	Drug Adsorption in Human Skin: A Streaming Potential Study. Journal of Pharmaceutical Sciences, 2003, 92, 2366-2372.	3.3	11
159	SVM Classification and CoMSIA Modeling of UGT1A6 Interacting Molecules. Journal of Chemical Information and Modeling, 2014, 54, 1011-1026.	5.4	11
160	Preparation and biological evaluation of ethionamide-mesoporous silicon nanoparticles against Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 403-405.	2.2	11
161	High-Generation Amphiphilic Janus-Dendrimers as Stabilizing Agents for Drug Suspensions. Biomacromolecules, 2018, 19, 3983-3993.	5.4	11
162	Tandemâ€Massâ€Tag Based Proteomic Analysis Facilitates Analyzing Critical Factors of Porous Silicon Nanoparticles in Determining Their Biological Responses under Diseased Condition. Advanced Science, 2020, 7, 2001129.	11.2	11

#	Article	IF	CITATIONS
163	Feasibility Evaluation of 3 Automated Cellular Drug Screening Assays on a Robotic Workstation. Journal of Biomolecular Screening, 2010, 15, 30-41.	2.6	10
164	Hybrid red blood cell membrane coated porous silicon nanoparticles functionalized with cancer antigen induce depletion of T cells. RSC Advances, 2020, 10, 35198-35205.	3.6	10
165	Highly variable pH effects on the interaction of diclofenac and indomethacin with human UDP-glucuronosyltransferases. Toxicology in Vitro, 2012, 26, 1286-1293.	2.4	9
166	Topical lontophoretic Delivery. American Journal of Drug Delivery, 2005, 3, 67-81.	0.6	8
167	The Emerging Role of Multifunctional Theranostic Materials in Cancer Nanomedicine. , 2018, , 1-31.		8
168	Fluorescence-Based High-Throughput Screening Assay for Drug Interactions with UGT1A6. Assay and Drug Development Technologies, 2011, 9, 496-502.	1.2	7
169	Spray-drying for the formulation of oral drug delivery systems. , 2020, , 253-284.		6
170	Principles of nanosized drug delivery systems. , 2020, , 3-25.		6
171	Permeability profiles of M-alkoxysubstituted pyrrolidinoethylesters of phenylcarbamic acid across caco-2 monolayers and human skin. Pharmaceutical Research, 2002, 19, 162-168.	3.5	5
172	Quantitative Analysis of Porous Silicon Nanoparticles Functionalization by ¹ H NMR. ACS Biomaterials Science and Engineering, 2022, 8, 4132-4139.	5.2	5
173	Feasibility of silicon and silica based mesoporous materials for oral drug delivery applications. European Journal of Pharmaceutical Sciences, 2008, 34, S21.	4.0	4
174	Analytical tools for reliable in vitro and in vivo performance testing of drug nanocrystals. , 2018, , 441-477.		2
175	Porous Silicon Nanoparticles. , 2013, , 235-275.		1