Mehdi Jafary-Zadeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11928032/publications.pdf

Version: 2024-02-01

933447 996975 16 461 10 15 citations g-index h-index papers 16 16 16 659 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mechanisms of Failure in Nanoscale Metallic Glass. Nano Letters, 2014, 14, 5858-5864.	9.1	78
2	Size Effect Suppresses Brittle Failure in Hollow Cu ₆₀ Zr ₄₀ Metallic Glass Nanolattices Deformed at Cryogenic Temperatures. Nano Letters, 2015, 15, 5673-5681.	9.1	77
3	A Critical Review on Metallic Glasses as Structural Materials for Cardiovascular Stent Applications. Journal of Functional Biomaterials, 2018, 9, 19.	4.4	59
4	Substantial tensile ductility in sputtered Zr-Ni-Al nano-sized metallic glass. Acta Materialia, 2016, 118, 270-285.	7.9	52
5	Applying a machine learning interatomic potential to unravel theÂeffects of local lattice distortion on the elastic properties of multi-principal element alloys. Journal of Alloys and Compounds, 2019, 803, 1054-1062.	5.5	41
6	Kinetic nanofriction: a mechanism transition from quasi-continuous to ballistic-like Brownian regime. Nanoscale Research Letters, 2012, 7, 148.	5.7	28
7	On the controllability of phase formation in rapid solidification of high entropy alloys. Journal of Alloys and Compounds, 2018, 748, 679-686.	5.5	27
8	Thermally induced failure mechanism transition and its correlation with short-range order evolution in metallic glasses. Extreme Mechanics Letters, 2016, 9, 215-225.	4.1	23
9	Feasibility of using bulk metallic glass for self-expandable stent applications. , 2017, 105, 1874-1882.		15
10	Deployment of a Bulk Metallic Glass-Based Self-Expandable Stent in a Patient-Specific Descending Aorta. ACS Biomaterials Science and Engineering, 2016, 2, 1951-1958.	5.2	14
11	A chemical route to control molecular mobility on graphene. Physical Chemistry Chemical Physics, 2012, 14, 10533.	2.8	12
12	Molecular dynamics study of two dimensional silicon dioxides with in-plane negative Poisson's ratio. Computational Materials Science, 2018, 153, 258-267.	3.0	10
13	Molecular mobility on graphene nanoroads. Scientific Reports, 2015, 5, 12848.	3.3	9
14	Nanoglassâ€based balloon expandable stents. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 73-79.	3.4	7
15	Chemical affinity can govern notch-tip brittle-to-ductile transition in metallic glasses. Extreme Mechanics Letters, 2022, 52, 101651.	4.1	5
16	Anharmonic model for the elastic constants of bulk metallic glass across the glass transition. Physical Review B, 2018, 97, .	3.2	4