Susan I Gibson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11925830/publications.pdf Version: 2024-02-01

SUSAN L CIRSON

#	Article	IF	CITATIONS
1	Repression of <i>ZCT1</i> , <i>ZCT2</i> and <i>ZCT3</i> affects expression of terpenoid indole alkaloid biosynthetic and regulatory genes. PeerJ, 2021, 9, e11624.	2.0	4
2	CrBPF1 overexpression alters transcript levels of terpenoid indole alkaloid biosynthetic and regulatory genes. Frontiers in Plant Science, 2015, 6, 818.	3.6	34
3	Identification of differentially expressed genes between developing seeds of different soybean cultivars. Genomics Data, 2015, 6, 92-98.	1.3	3
4	Promoting an active form of learning out-of-class via answering online "study questions―leads to higher than expected exam scores in General Biology. PeerJ, 2015, 3, e1322.	2.0	7
5	<scp>SIS</scp> 8, a putative mitogenâ€activated protein kinase kinase kinase, regulates sugarâ€resistant seedling development in Arabidopsis. Plant Journal, 2014, 77, 577-588.	5.7	30
6	The ORCA2 transcription factor plays a key role in regulation of the terpenoid indole alkaloid pathway. BMC Plant Biology, 2013, 13, 155.	3.6	97
7	Mutations in HISTONE ACETYLTRANSFERASE1 affect sugar response and gene expression in Arabidopsis. Frontiers in Plant Science, 2013, 4, 245.	3.6	24
8	SUGAR-INSENSITIVE3, a RING E3 Ligase, Is a New Player in Plant Sugar Response. Plant Physiology, 2010, 152, 1889-1900.	4.8	45
9	Identification, cloning and characterization of sis7 and sis10 sugar-insensitive mutants of Arabidopsis. BMC Plant Biology, 2008, 8, 104.	3.6	25
10	Characterization of an Ethanol-Inducible Promoter System in Catharanthus roseus Hairy Roots. Biotechnology Progress, 2007, 23, 0-0.	2.6	11
11	Expression of the Arabidopsis feedback-insensitive anthranilate synthase holoenzyme and tryptophan decarboxylase genes in Catharanthus roseus hairy roots. Journal of Biotechnology, 2006, 122, 28-38.	3.8	77
12	Terpenoid indole alkaloid production byCatharanthus roseus hairy roots induced byAgrobacterium tumefaciens harboringrol ABC genes. Biotechnology and Bioengineering, 2006, 93, 386-390.	3.3	48
13	Effects of terpenoid precursor feeding onCatharanthus roseus hairy roots over-expressing the alpha or the alpha and beta subunits of anthranilate synthase. Biotechnology and Bioengineering, 2006, 93, 534-540.	3.3	53
14	Transient Effects of Overexpressing Anthranilate Synthase α and β Subunits in Catharanthus roseus Hairy Roots. Biotechnology Progress, 2005, 21, 1572-1576.	2.6	35
15	Control of plant development and gene expression by sugar signaling. Current Opinion in Plant Biology, 2005, 8, 93-102.	7.1	584
16	Expression of a feedback-resistant anthranilate synthase inCatharanthus roseus hairy roots provides evidence for tight regulation of terpenoid indole alkaloid levels. Biotechnology and Bioengineering, 2004, 86, 718-727.	3.3	83
17	Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metabolic Engineering, 2004, 6, 268-276.	7.0	114
18	Chloroplast biogenesis by Arabidopsis seedlings is impaired in the presence of exogenous glucose. Physiologia Plantarum, 2003, 118, 456-463.	5.2	22

SUSAN I GIBSON

#	Article	IF	CITATIONS
19	Sugar and phytohormone response pathways: navigating a signalling network. Journal of Experimental Botany, 2003, 55, 253-264.	4.8	262
20	Mobilization of seed storage lipid by Arabidopsis seedlings is retarded in the presence of exogenous sugars. BMC Plant Biology, 2002, 2, 4.	3.6	56
21	ABA and sugar interactions regulating development: cross-talk or voices in a crowd?. Current Opinion in Plant Biology, 2002, 5, 26-32.	7.1	291
22	Characterization of an Inducible Promoter System in Catharanthus roseus Hairy Roots. Biotechnology Progress, 2002, 18, 1183-1186.	2.6	52
23	The sugar-insensitive1 (sis1) Mutant of Arabidopsis Is Allelic to ctr1. Biochemical and Biophysical Research Communications, 2001, 280, 196-203.	2.1	127
24	The <i>ram1</i> Mutant of Arabidopsis Exhibits Severely Decreased β-Amylase Activity. Plant Physiology, 2001, 127, 1798-1807.	4.8	67
25	The ram1 Mutant of Arabidopsis Exhibits Severely Decreased beta -Amylase Activity. Plant Physiology, 2001, 127, 1798-1807.	4.8	13
26	The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant Journal, 2000, 23, 587-596.	5.7	374
27	Fumaric acid: an overlooked form of fixed carbon in Arabidopsis and other plant species. Planta, 2000, 211, 743-751.	3.2	186
28	Plant Sugar-Response Pathways. Part of a Complex Regulatory Web. Plant Physiology, 2000, 124, 1532-1539.	4.8	240