John C Lassiter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/119248/publications.pdf

Version: 2024-02-01

42 papers 2,633 citations

218677
26
h-index

289244 40 g-index

45 all docs

45 docs citations

45 times ranked

1778 citing authors

#	Article	IF	CITATIONS
1	Osmium-isotope variations in Hawaiian lavas: evidence for recycled oceanic lithosphere in the Hawaiian plume. Earth and Planetary Science Letters, 1998, 164, 483-496.	4.4	343
2	Osmium isotope systematics of drilled lavas from Mauna Loa, Hawaii. Journal of Geophysical Research, 1996, 101, 11793-11806.	3.3	182
3	Ancient recycled mantle lithosphere in the Hawaiian plume: Osmium–Hafnium isotopic evidence from peridotite mantle xenoliths. Earth and Planetary Science Letters, 2007, 257, 259-273.	4.4	137
4	Generation of Hawaiian post-erosional lavas by melting of a mixed lherzolite/pyroxenite source. Earth and Planetary Science Letters, 2000, 178, 269-284.	4.4	134
5	Isotopic evolution of Mauna Kea volcano: Results from the initial phase of the Hawaii Scientific Drilling Project. Journal of Geophysical Research, 1996, 101, 11769-11780.	3. 3	127
6	Geochemistry of the Wrangellia Flood Basalt Province: Implications for the Role of Continental and Oceanic Lithosphere in Flood Basalt Genesis. Journal of Petrology, 1995, 36, 983-1009.	2.8	118
7	Helium isotopic evolution of Mauna Kea Volcano: First results from the 1-km drill core. Journal of Geophysical Research, 1996, 101, 11781-11791.	3.3	116
8	Isotope and trace element variations in lavas from Raivavae and Rapa, Cook–Austral islands: constraints on the nature of HIMU- and EM-mantle and the origin of mid-plate volcanism in French Polynesia. Chemical Geology, 2003, 202, 115-138.	3.3	106
9	Chlorine–potassium variations in melt inclusions from Raivavae and Rapa, Austral Islands: constraints on chlorine recycling in the mantle and evidence for brine-induced melting of oceanic crust. Earth and Planetary Science Letters, 2002, 202, 525-540.	4.4	104
10	Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotopic Constraints. Geophysical Monograph Series, 0, , 335-355.	0.1	102
11	Geochemical structure of the Hawaiian plume: Sr, Nd, and Os isotopes in the 2.8 km HSDP-2 section of Mauna Kea volcano. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	2.5	93
12	The Role of Continental Crust and Lithospheric Mantle in the Genesis of Cameroon Volcanic Line Lavas: Constraints from Isotopic Variations in Lavas and Megacrysts from the Biu and Jos Plateaux. Journal of Petrology, 2004, 46, 169-190.	2.8	86
13	Geochemistry of Kauai shield-stage lavas: Implications for the chemical evolution of the Hawaiian plume. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2.5	71
14	Constraints from Os-isotope variations on the origin of Lena Trough abyssal peridotites and implications for the composition and evolution of the depleted upper mantle. Earth and Planetary Science Letters, 2014, 403, 178-187.	4.4	71
15	New constraints on the HIMU mantle from neon and helium isotopic compositions of basalts from the Cook–Austral Islands. Earth and Planetary Science Letters, 2009, 277, 253-261.	4.4	68
16	Lithium isotope systematics of lavas from the Cook–Austral Islands: Constraints on the origin of HIMU mantle. Earth and Planetary Science Letters, 2009, 277, 433-442.	4.4	67
17	Rhenium volatility in subaerial lavas: constraints from subaerial and submarine portions of the HSDP-2 Mauna Kea drillcore. Earth and Planetary Science Letters, 2003, 214, 311-325.	4.4	66
18	Role of recycled oceanic crust in the potassium and argon budget of the Earth: Toward a resolution of the "missing argon―problem. Geochemistry, Geophysics, Geosystems, 2004, 5, n/a-n/a.	2.5	60

#	Article	IF	Citations
19	Isotopically ultradepleted domains in the convecting upper mantle: Implications for MORB petrogenesis. Geology, 2014, 42, 203-206.	4.4	60
20	Osmium abundance and isotope variations in mafic Mexican volcanic rocks: Evidence for crustal contamination and constraints on the geochemical behavior of osmium during partial melting and fractional crystallization. Geochemistry, Geophysics, Geosystems, 2001, 2, n/a-n/a.	2.5	59
21	Origin of megacrysts in volcanic rocks of the Cameroon volcanic chain? constraints on magma genesis and crustal contamination. Contributions To Mineralogy and Petrology, 2004, 147, 129-144.	3.1	57
22	40Ar/39Ar dating, geochemistry, and isotopic analyses of the quaternary Chichinautzin volcanic field, south of Mexico City: implications for timing, eruption rate, and distribution of volcanism. Bulletin of Volcanology, 2013, 75, 1.	3.0	54
23	PGE and Os-isotopic variations in lavas from Kohala Volcano, Hawaii: Constraints on PGE behavior and melt/crust interaction. Chemical Geology, 2008, 250, 16-28.	3.3	44
24	Evidence from mantle xenoliths for lithosphere removal beneath the central Rio Grande Rift. Earth and Planetary Science Letters, 2012, 355-356, 82-93.	4.4	42
25	Constraints on the coupled thermal evolution of the Earth's core and mantle, the age of the inner core, and the origin of the 186Os/188Os "core signal―in plume-derived lavas. Earth and Planetary Science Letters, 2006, 250, 306-317.	4.4	32
26	Intermittent mixing processes occurring before Plinian eruptions of Popocatepetl volcano, Mexico: insights from textural–compositional variations in plagioclase and Sr–Nd–Pb isotopes. Contributions To Mineralogy and Petrology, 2014, 167, 1.	3.1	29
27	Chlorine enrichment in central Rio Grande Rift basaltic melt inclusions: Evidence for subduction modification of the lithospheric mantle. Geology, 2009, 37, 439-442.	4.4	28
28	High precision Os isotopic measurement using N-TIMS: Quantification of various sources of error in 1860s/1880s measurements. Chemical Geology, 2015, 396, 112-123.	3.3	20
29	Trace element partitioning and Lu–Hf isotope systematics in spinel peridotites from the Rio Grande Rift and Colorado Plateau: Towards improved age assessment of clinopyroxene Lu/Hf–176Hf/177Hf in SCLM peridotite. Chemical Geology, 2015, 413, 146-158.	3.3	18
30	Basalt volatile fluctuations during continental rifting: An example from the <scp>R</scp> io <scp>G</scp> rande <scp>R</scp> ift, USA. Geochemistry, Geophysics, Geosystems, 2015, 16, 1254-1273.	2.5	17
31	Temperature-dependent variations in mineralogy, major element chemistry and the stable isotopes of boron, lithium and chlorine resulting from hydration of rhyolite: Constraints from hydrothermal experiments at 150 to 350 °C and 25 MPa. Geochimica Et Cosmochimica Acta, 2019, 261, 269-287.	3.9	17
32	Mantle melt production during the 1.4 Ga Laurentian magmatic event: Isotopic constraints from Colorado Plateau mantle xenoliths. Geology, 2017, 45, 519-522.	4.4	16
33	On the (mis)behavior of water in the mantle: Controls on nominally anhydrous mineral water content in mantle peridotites. Earth and Planetary Science Letters, 2018, 499, 219-229.	4.4	16
34	186Os/188Os variations in upper mantle peridotites: Constraints on the Pt/Os ratio of primitive upper mantle, and implications for late veneer accretion and mantle mixing timescales. Chemical Geology, 2016, 442, 11-22.	3.3	14
35	The Systematics of Chlorine, Lithium, and Boron and δ ³⁷ Cl, δ ⁷ Li, and δ ¹¹ B in the Hydrothermal System of the Yellowstone Plateau Volcanic Field. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009589.	2.5	14
36	The role of the upper plate in controlling fluid-mobile element (Cl, Li, B) cycling through subduction zones: Hikurangi forearc, New Zealand., 2019, 15, 642-658.		12

#	Article	IF	CITATIONS
37	The role of serpentinite-derived fluids in metasomatism of the Colorado Plateau (USA) lithospheric mantle. Geology, 2017, 45, 1103-1106.	4.4	10
38	Origin of temporal compositional trends in monogenetic vent eruptions: Insights from the crystal cargo in the Papoose Canyon sequence, Big Pine Volcanic Field, CA. Earth and Planetary Science Letters, 2017, 457, 227-237.	4.4	9
39	Geochemical investigation of Gabbroic Xenoliths from Hualalai Volcano: Implications for lower oceanic crust accretion and Hualalai Volcano magma storage system. Earth and Planetary Science Letters, 2016, 442, 162-172.	4.4	7
40	On the equilibration timescales of isolated trace phases in mantle peridotites: Implications for the interpretation of grain-scale isotope heterogeneity in peridotitic sulfides. Earth and Planetary Science Letters, 2018, 498, 427-435.	4.4	4
41	Contrasting meteoritic signatures within the Clearwater East and Clearwater West impact structures: The view from osmium isotopes. Geochimica Et Cosmochimica Acta, 2018, 235, 262-284.	3.9	2
42	GEOPHYSICS:Hawaiian Plume Dynamics. Science, 1999, 285, 846-847.	12.6	0