John Mundy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1192395/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA damage as a consequence of NLR activation. PLoS Genetics, 2018, 14, e1007235.	3.5	21
2	Chitin and Stress Induced Protein Kinase Activation. Methods in Molecular Biology, 2017, 1578, 185-194.	0.9	1
3	Chitin-Induced Responses in the Moss Physcomitrella patens. Methods in Molecular Biology, 2017, 1578, 317-324.	0.9	2
4	Matching NLR Immune Receptors to Autoimmunity in camta3 Mutants Using Antimorphic NLR Alleles. Cell Host and Microbe, 2017, 21, 518-529.e4.	11.0	63
5	Phosphatidylserine Stimulates Ceramide 1-Phosphate (C1P) Intermembrane Transfer by C1P Transfer Proteins. Journal of Biological Chemistry, 2017, 292, 2531-2541.	3.4	20
6	Autophagy is required for gamete differentiation in the moss <i>Physcomitrella patens</i> . Autophagy, 2017, 13, 1939-1951.	9.1	47
7	Making sense of plant autoimmunity and â€~negative regulators'. FEBS Journal, 2016, 283, 1385-1391.	4.7	59
8	MYB75 Phosphorylation by MPK4 Is Required for Light-Induced Anthocyanin Accumulation in Arabidopsis. Plant Cell, 2016, 28, 2866-2883.	6.6	166
9	An Innate Immunity Pathway in the Moss <i>Physcomitrella patens</i> Â. Plant Cell, 2016, 28, 1328-1342.	6.6	73
10	Transcriptome and Genome Size Analysis of the Venus Flytrap. PLoS ONE, 2015, 10, e0123887.	2.5	12
11	Retromer Contributes to Immunity-Associated Cell Death in Arabidopsis. Plant Cell, 2015, 27, 463-479.	6.6	67
12	The pearl millet mitogen-activated protein kinase PgMPK4 is involved in responses to downy mildew infection and in jasmonic- and salicylic acid-mediated defense. Plant Molecular Biology, 2015, 87, 287-302.	3.9	13
13	The <scp>mRNA</scp> decay factor <scp>PAT</scp> 1 functions in a pathway including <scp>MAP</scp> kinase 4 and immune receptor <scp>SUMM</scp> 2. EMBO Journal, 2015, 34, 593-608.	7.8	100
14	Arabidopsis Accelerated Cell Death 11, ACD11, Is a Ceramide-1-Phosphate Transfer Protein and Intermediary Regulator of Phytoceramide Levels. Cell Reports, 2014, 6, 388-399.	6.4	69
15	ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene <i>NCED3</i> in <i>Arabidopsis thaliana</i> . FEBS Open Bio, 2013, 3, 321-327.	2.3	182
16	Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature, 2013, 499, 74-78.	27.8	717
17	Transcriptome Responses to Combinations of Stresses in Arabidopsis Â. Plant Physiology, 2013, 161, 1783-1794.	4.8	478
18	Genome scale transcriptional response diversity among ten ecotypes of Arabidopsis thaliana during heat stress. Frontiers in Plant Science, 2013, 4, 532.	3.6	43

#	Article	IF	CITATIONS
19	Genome-scale cold stress response regulatory networks in ten Arabidopsis thalianaecotypes. BMC Genomics, 2013, 14, 722.	2.8	73
20	MAP Kinase Cascades in Arabidopsis Innate Immunity. Frontiers in Plant Science, 2012, 3, 169.	3.6	171
21	Receptor-like kinase complexes in plant innate immunity. Frontiers in Plant Science, 2012, 3, 209.	3.6	74
22	Morphological classification of plant cell deaths. Cell Death and Differentiation, 2011, 18, 1241-1246.	11.2	481
23	Role of autophagy in disease resistance and hypersensitive response-associated cell death. Cell Death and Differentiation, 2011, 18, 1257-1262.	11.2	90
24	Transcriptomes of the desiccationâ€ŧolerant resurrection plant <i>Craterostigma plantagineum</i> . Plant Journal, 2010, 63, 212-228.	5.7	149
25	Lazarus1, a DUF300 Protein, Contributes to Programmed Cell Death Associated with Arabidopsis acd11 and the Hypersensitive Response. PLoS ONE, 2010, 5, e12586.	2.5	25
26	Arabidopsis MKS1 Is Involved in Basal Immunity and Requires an Intact N-terminal Domain for Proper Function. PLoS ONE, 2010, 5, e14364.	2.5	65
27	Autoimmunity in Arabidopsis acd11 Is Mediated by Epigenetic Regulation of an Immune Receptor. PLoS Pathogens, 2010, 6, e1001137.	4.7	170
28	Mitogen-Activated Protein Kinase Signaling in Plants. Annual Review of Plant Biology, 2010, 61, 621-649.	18.7	952
29	Self-consuming innate immunity in Arabidopsis. Autophagy, 2009, 5, 1206-1207.	9.1	6
30	Gene regulation by MAP kinase cascades. Current Opinion in Plant Biology, 2009, 12, 615-621.	7.1	114
31	Autophagic Components Contribute to Hypersensitive Cell Death in Arabidopsis. Cell, 2009, 137, 773-783.	28.9	348
32	Identification of proteins interacting with Arabidopsis ACD11. Journal of Plant Physiology, 2009, 166, 661-666.	3.5	38
33	Coimmunoprecipitation (co-IP) of Nuclear Proteins and Chromatin Immunoprecipitation (ChIP) from <i>Arabidopsis</i> . Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5049.	0.3	38
34	Human GLTP and mutant forms of ACD11 suppress cell death in the <i>Arabidopsis acd11</i> mutant. FEBS Journal, 2008, 275, 4378-4388.	4.7	30
35	Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO Journal, 2008, 27, 2214-2221.	7.8	445
36	Arabidopsis Mitogen-Activated Protein Kinase Kinases MKK1 and MKK2 Have Overlapping Functions in Defense Signaling Mediated by MEKK1, MPK4, and MKS1. Plant Physiology, 2008, 148, 212-222.	4.8	266

John Mundy

#	Article	IF	CITATIONS
37	Downstream targets of WRKY33. Plant Signaling and Behavior, 2008, 3, 1033-1034.	2.4	23
38	Functional Associations by Response Overlap (FARO), a Functional Genomics Approach Matching Gene Expression Phenotypes. PLoS ONE, 2007, 2, e676.	2.5	17
39	Phosphorylation sites of Arabidopsis MAP kinase substrate 1 (MKS1). Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 1156-1163.	2.3	17
40	Inducible cell death in plant immunity. Seminars in Cancer Biology, 2007, 17, 166-187.	9.6	98
41	Expression of theArabidopsishigh-affinity hexose transporter STP13 correlates with programmed cell death. FEBS Letters, 2006, 580, 2381-2387.	2.8	96
42	A putative flavin-containing mono-oxygenase as a marker for certain defense and cell death pathways. Plant Science, 2006, 170, 614-623.	3.6	24
43	Crosstalk. Trends in Plant Science, 2006, 11, 63-64.	8.8	21
44	Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends in Plant Science, 2006, 11, 192-198.	8.8	481
45	Gene Discovery and Functional Analyses in the Model Plant Arabidopsis. Journal of Integrative Plant Biology, 2006, 48, 5-14.	8.5	9
46	Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant Journal, 2006, 47, 532-546.	5.7	352
47	The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO Journal, 2005, 24, 2579-2589.	7.8	480
48	The Role of Salicylic Acid in the Induction of Cell Death in Arabidopsis acd11. Plant Physiology, 2005, 138, 1037-1045.	4.8	146
49	Arabidopsis VARIEGATED 3 encodes a chloroplast-targeted, zinc-finger protein required for chloroplast and palisade cell development. Journal of Cell Science, 2004, 117, 4807-4818.	2.0	65
50	Arabidopsis MYB68 in development and responses to environmental cues. Plant Science, 2004, 167, 1099-1107.	3.6	83
51	Plants flex their skeletons. Trends in Plant Science, 2003, 8, 202-204.	8.8	32
52	TheArabidopsis lue1mutant defines a katanin p60 ortholog involved in hormonal control of microtubule orientation during cell growth. Journal of Cell Science, 2003, 116, 791-801.	2.0	176
53	Knockout of Arabidopsis ACCELERATED-CELL-DEATH11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes and Development, 2002, 16, 490-502.	5.9	363
54	Protein phosphorylation in and around signal transduction. Trends in Plant Science, 2002, 7, 54-55.	8.8	8

John Mundy

#	Article	IF	CITATIONS
55	Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends in Plant Science, 2002, 7, 301-308.	8.8	1,080
56	The barley Jip23b gene. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1576, 231-235.	2.4	1
57	Fusion genetic analysis of jasmonateâ€signalling mutants in Arabidopsis. Plant Journal, 2002, 29, 595-606.	5.7	83
58	Human anti-rhesus D IgG1 antibody produced in transgenic plants. Transgenic Research, 2002, 11, 115-122.	2.4	30
59	An Arabidopsis callose synthase. Plant Molecular Biology, 2002, 49, 559-566.	3.9	88
60	Peptomics, identification of novel cationic Arabidopsis peptides with conserved sequence motifs. In Silico Biology, 2002, 2, 441-51.	0.9	62
61	Two differentially regulated Arabidopsis genes define a new branch of the DFR superfamily. Plant Science, 2001, 160, 463-472.	3.6	24
62	Gibberellin response mutants identified by luciferase imaging. Plant Journal, 2001, 25, 509-519.	5.7	67
63	Oil bodies and their associated proteins, oleosin and caleosin. Physiologia Plantarum, 2001, 112, 301-307.	5.2	298
64	A recombinase-mediated transcriptional induction system in transgenic plants. Plant Molecular Biology, 2001, 45, 41-49.	3.9	94
65	Control of Specific Gene Expression by Gibberellin and Brassinosteroid. Plant Physiology, 2001, 127, 450-458.	4.8	140
66	Fusion genetic analysis of gibberellin signaling mutants. Plant Journal, 2000, 22, 427-438.	5.7	25
67	Arabidopsis ATP A2 peroxidase. Expression and high-resolution structure of a plant peroxidase with implications for lignification. Plant Molecular Biology, 2000, 44, 231-243.	3.9	149
68	Promiscuous and specific phospholipid binding by domains in ZAC, a membrane-associated Arabidopsis protein with an ARF GAP zinc finger and a C2 domain. Plant Molecular Biology, 2000, 44, 799-814.	3.9	35
69	Caleosins: Ca2+-binding proteins associated with lipid bodies. Plant Molecular Biology, 2000, 44, 463-476.	3.9	161
70	Arabidopsis MAP Kinase 4 Negatively Regulates Systemic Acquired Resistance. Cell, 2000, 103, 1111-1120.	28.9	946
71	Target genes and regulatory domains of the GAMYB transcriptional activator in cereal aleurone. Plant Journal, 1999, 17, 1-9.	5.7	223
72	A bacterial haloalkane dehalogenase gene as a negative selectable marker in Arabidopsis. Plant Journal, 1999, 18, 571-576.	5.7	28

#	Article	IF	CITATIONS
73	Preparation of Pooled Arabidopsis YAC DNAs for PCR-Based Mapping. Plant Molecular Biology Reporter, 1999, 17, 67-71.	1.8	0
74	Genetic engineering of wheat for increased resistance to powdery mildew disease. Theoretical and Applied Genetics, 1999, 98, 1079-1086.	3.6	145
75	Ribosome-Inactivating Proteins. , 1999, , .		0
76	Biochemical and genetic characterization of three molybdenum cofactor hydroxylases in Arabidopsis thaliana. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1398, 397-402.	2.4	23
77	HRT, a Novel Zinc Finger, Transcriptional Repressor from Barley. Journal of Biological Chemistry, 1998, 273, 23313-23320.	3.4	69
78	Manual labor. Trends in Plant Science, 1997, 2, 283.	8.8	0
79	Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant Journal, 1997, 11, 513-523.	5.7	256
80	Novel Plant Ca2+-binding Protein Expressed in Response to Abscisic Acid and Osmotic Stress. Journal of Biological Chemistry, 1996, 271, 343-348.	3.4	95
81	A 20 bp cis-acting element is both necessary and sufficient to mediate elicitor response of a maize PRms gene. Plant Journal, 1995, 7, 147-155.	5.7	78
82	Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant Journal, 1995, 8, 97-109.	5.7	498
83	The effect of intracellular pH on the regulation of the Rab 16A and the ?-amylase 1/6-4 promoter by abscisic acid and gibberellia. Plant Molecular Biology, 1995, 27, 815-820.	3.9	13
84	Cloning genomic sequences using long-range PCR. Plant Molecular Biology Reporter, 1995, 13, 156-163.	1.8	12
85	Biochemical and Molecular Characterization of a Barley Seed Î ² -Glucosidase. Journal of Biological Chemistry, 1995, 270, 15789-15797.	3.4	169
86	Identification of an enhancer/silencer sequence directing the aleurone-specific expression of a barley chitinase gene. Plant Journal, 1994, 6, 579-589.	5.7	44
87	The barley 60 kDa jasmonate-induced protein (JIP60) is a novel ribosome-inactivating protein. Plant Journal, 1994, 6, 815-824.	5.7	142
88	Genes encoding ribosome-inactivating proteins. Plant Molecular Biology Reporter, 1994, 12, S60-S62.	1.8	24
89	Expression of a Barley Ribosome-Inactivating Protein Leads to Increased Fungal Protection in Transgenic Tobacco Plants. Nature Biotechnology, 1992, 10, 305-308.	17.5	143
90	Structure and expression of the barley lipid transfer protein gene Ltp1. Plant Molecular Biology, 1992, 18, 585-589.	3.9	64

#	Article	IF	CITATIONS
91	Regulation of the maizerab17 gene promoter in transgenic heterologous systems. Plant Molecular Biology, 1991, 17, 985-993.	3.9	61
92	cis-acting DNA elements responsive to gibberellin and its antagonist abscisic acid Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 7266-7270.	7.1	287
93	Gene Expression in Response to Abscisic Acid and Osmotic Stress. Plant Cell, 1990, 2, 503.	6.6	28
94	Four tightly linked rab genes are differentially expressed in rice. Plant Molecular Biology, 1990, 14, 29-39.	3.9	143
95	Differential expression of two related organ-specific genes in pea. Plant Molecular Biology, 1990, 14, 765-774.	3.9	12
96	Analysis of an ABA-responsive rice gene promoter in transgenic tobacco. Plant Molecular Biology, 1990, 15, 905-912.	3.9	55
97	Gene expression in response to abscisic acid and osmotic stress Plant Cell, 1990, 2, 503-512.	6.6	903
98	Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 1406-1410.	7.1	364
99	Developing nomenclature for genes of unknown function: A case study of ABA-responsive genes. Plant Molecular Biology Reporter, 1989, 7, 276-283.	1.8	5
100	Common amino acid sequence domains among the LEA proteins of higher plants. Plant Molecular Biology, 1989, 12, 475-486.	3.9	717
101	The bifunctional ?-amylase/subtilisin inhibitor of barley: nucleotide sequence and patterns of seed-specific expression. Plant Molecular Biology, 1989, 12, 673-682.	3.9	90
102	Differential effects of the hiproly lys 1 gene on the developmental synthesis of (lysine-rich) proteins from barley endosperm. Plant Science, 1988, 55, 255-266.	3.6	10
103	Identification of a 28,000 Dalton endochitinase in barley endosperm. Carlsberg Research Communications, 1987, 52, 31-37.	1.8	42
104	Effects of gibberellic acid and abscisic acid on levels of translatable mRNA (1→3,1→4)-β-D-glucanase in barley aleurone. FEBS Letters, 1986, 198, 349-352.	2.8	25
105	Selective expression of a probable amylase/protease inhibitor in barley aleurone cells: Comparison to the barley amylase/subtilisin inhibitor. Planta, 1986, 169, 51-63.	3.2	191
106	A 10 kD barley seed protein homologous with an α-amylase inhibitor from Indian finger millet. Carlsberg Research Communications, 1986, 51, 493-500.	1.8	64
107	Complete amino acid sequence of the α-amylase/subtilisin inhibitor from barley. Carlsberg Research Communications, 1986, 51, 43-50.	1.8	67
108	Differential Synthesis in Vitro of Barley Aleurone and Starchy Endosperm Proteins. Plant Physiology, 1986, 81, 630-636.	4.8	73

#	Article	IF	CITATIONS
109	Partial amino acid sequences of $\hat{l}\pm$ -amylase isozymes from barley malt. Carlsberg Research Communications, 1985, 50, 15-22.	1.8	56
110	Messenger RNAs from the Scutellum and Aleurone of Germinating Barley Encode (1→3,1→4)-β-d-Glucanase, α-Amylase and Carboxypeptidase. Plant Physiology, 1985, 79, 867-871.	4.8	49
111	Hormonal regulation of Î \pm -amylase inhibitor synthesis in germinating barley. Carlsberg Research Communications, 1984, 49, 439-444.	1.8	46
112	Characterization of a bifunctional wheat inhibitor of endogenous α-amylase and subtilisin. FEBS Letters, 1984, 167, 210-214.	2.8	95
113	Barley α-amylase/subtilisin inhibitor. I. Isolation and characterization. Carlsberg Research Communications, 1983, 48, 81-90.	1.8	178
114	Barley α-amylase/subtilisin inhibitor. II. N-terminal amino acid sequence and homology with inhibitors of the soybean trypsin inhibitor (Kunitz) family. Carlsberg Research Communications, 1983, 48, 91-94.	1.8	46
115	Isolation and characterization of two immunologically distinct forms of α-amylase and a β-amylase from seeds of germinated sorghum bicolor (L.) moench. Carlsberg Research Communications, 1982, 47, 263-274.	1.8	11