
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11921677/publications.pdf Version: 2024-02-01

Ε Ειληλιίτ

#	Article	IF	CITATIONS
1	Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon, 2001, 39, 507-514.	10.3	1,782
2	Carbon nanotube–metal–oxide nanocomposites: microstructure, electrical conductivity and mechanical properties. Acta Materialia, 2000, 48, 3803-3812.	7.9	438
3	Complement activation and protein adsorption by carbon nanotubes. Molecular Immunology, 2006, 43, 193-201.	2.2	395
4	Carbon nanotubes in novel ceramic matrix nanocomposites. Ceramics International, 2000, 26, 677-683.	4.8	370
5	High power density electrodes for Carbon supercapacitor applications. Electrochimica Acta, 2005, 50, 4174-4181.	5.2	327
6	The weight and density of carbon nanotubes versus the number of walls and diameter. Carbon, 2010, 48, 2994-2996.	10.3	242
7	Synthesis of single-walled carbon nanotube–Co–MgO composite powders and extraction of the nanotubes. Journal of Materials Chemistry, 2000, 10, 249-252.	6.7	237
8	Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions. Chemical Physics Letters, 1999, 300, 236-242.	2.6	236
9	Influence of carbon nanotubes addition on carbon–carbon supercapacitor performances in organic electrolyte. Journal of Power Sources, 2005, 139, 371-378.	7.8	222
10	Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation. Chemical Physics Letters, 2005, 402, 422-427.	2.6	201
11	Two layer 4:4 co-ordinated KI crystals grown within single walled carbon nanotubes. Chemical Physics Letters, 2000, 329, 61-65.	2.6	170
12	In Situ Raman Spectroscopy Study of Oxidation of Double- and Single-Wall Carbon Nanotubes. Chemistry of Materials, 2006, 18, 1525-1533.	6.7	161
13	Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion. Chemical Physics Letters, 2002, 352, 20-25.	2.6	159
14	CCVD Synthesis and Characterization of Cobalt-Encapsulated Nanoparticles. Chemistry of Materials, 2002, 14, 2553-2558.	6.7	154
15	Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation. Carbon, 2005, 43, 375-383.	10.3	134
16	Characterisation and in vivo ecotoxicity evaluation of double-wall carbon nanotubes in larvae of the amphibian Xenopus laevis. Aquatic Toxicology, 2008, 87, 127-137.	4.0	133
17	Hybrid carbon nanotubes: Strategy, progress, and perspectives. Journal of Materials Research, 2006, 21, 2774-2793.	2.6	122
18	Investigation of the cytotoxicity of CCVD carbon nanotubes towards human umbilical vein endothelial cells. Carbon, 2006, 44, 1093-1099.	10.3	101

Ε Γιαμαυτ

#	Article	IF	CITATIONS
19	Crystallization of 2H and 4H PbI2in Carbon Nanotubes of Varying Diameters and Morphologies. Chemistry of Materials, 2006, 18, 2059-2069.	6.7	86
20	Carbon nanotubes induce inflammation but decrease the production of reactive oxygen species in lung. Toxicology, 2010, 272, 39-45.	4.2	82
21	Bromination of Double-Walled Carbon Nanotubes. Chemistry of Materials, 2012, 24, 2708-2715.	6.7	76
22	Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA. Optics Express, 2013, 21, 23261.	3.4	74
23	An investigation of carbon nanotubes obtained from the decomposition of methane over reduced Mg _{1â^'<i>x</i>} M _{<i>x</i>} Al ₂ O ₄ spinel catalysts. Journal of Materials Research, 1999, 14, 2567-2576.	2.6	72
24	Rings of Double-Walled Carbon Nanotube Bundles. Nano Letters, 2003, 3, 685-689.	9.1	72
25	Raman spectroscopy of iodine-doped double-walled carbon nanotubes. Physical Review B, 2004, 69, .	3.2	70
26	High yield incorporation and washing properties of halides incorporated into single walled carbon nanotubes. Applied Physics A: Materials Science and Processing, 2003, 76, 457-462.	2.3	61
27	Ultrafast Raman laser mode-locked by nanotubes. Optics Letters, 2011, 36, 3996.	3.3	60
28	Anisotropic mechanical and functional properties of graphene-based alumina matrix nanocomposites. Journal of the European Ceramic Society, 2016, 36, 2075-2086.	5.7	57
29	Stability of Fluorinated Double-Walled Carbon Nanotubes Produced by Different Fluorination Techniques. Chemistry of Materials, 2010, 22, 4197-4203.	6.7	49
30	AFM imaging of functionalized carbon nanotubes on biological membranes. Nanotechnology, 2009, 20, 434001.	2.6	45
31	Writing simple RF electronic devices on paper with carbon nanotube ink. Nanotechnology, 2009, 20, 375203.	2.6	44
32	Gate-Dependent Magnetoresistance Phenomena in Carbon Nanotubes. Physical Review Letters, 2005, 94, 066801.	7.8	43
33	Improving photovoltaic response of poly(3-hexylthiophene)/n-Si heterojunction by incorporating double walled carbon nanotubes. Applied Physics Letters, 2006, 89, 223505.	3.3	41
34	Infrared-active phonons in carbon nanotubes. Physical Review B, 2006, 74, .	3.2	38
35	Raman bands of double-wall carbon nanotubes: comparison with single- and triple-wall carbon nanotubes, and influence of annealing and electron irradiation. Journal of Raman Spectroscopy, 2007, 38, 714-720.	2.5	37
36	Interaction of graphene-related materials with human intestinal cells: an in vitro approach. Nanoscale, 2016, 8, 8749-8760.	5.6	37

#	Article	IF	CITATIONS
37	Mössbauer spectroscopy study of MgAl2O4-matrix nanocomposite powders containing carbon nanotubes and iron-based nanoparticles. Acta Materialia, 2000, 48, 3015-3023.	7.9	36
38	Impact of the surface roughness on the electrical capacitance. Microelectronics Journal, 2006, 37, 752-758.	2.0	36
39	Experimental determination of microwave attenuation and electrical permittivity of double-walled carbon nanotubes. Applied Physics Letters, 2006, 88, 153108.	3.3	36
40	Structural selective charge transfer in iodine-doped carbon nanotubes. Journal of Physics and Chemistry of Solids, 2006, 67, 1190-1192.	4.0	33
41	Chlorinated holey double-walled carbon nanotubes for relative humidity sensors. Carbon, 2019, 148, 413-420.	10.3	33
42	Study of the cytotoxicity of CCVD carbon nanotubes. Journal of Materials Science, 2006, 41, 2411-2416.	3.7	31
43	Narrow diameter double-wall carbon nanotubes: synthesis, electron microscopy and inelastic light scattering. New Journal of Physics, 2003, 5, 131-131.	2.9	30
44	Improving the photovoltaic response of a poly(3-octylthiophene)/n-Si heterojunction by incorporating double-walled carbon nanotubes. Nanotechnology, 2007, 18, 185708.	2.6	28
45	AFM imaging of functionalized double-walled carbon nanotubes. Ultramicroscopy, 2009, 109, 899-906.	1.9	28
46	CCVD synthesis of carbon nanotubes with W/Co–MgO catalysts. Carbon, 2009, 47, 789-794.	10.3	28
47	Wavelength tunable soliton rains in a nanotube-mode locked Tm-doped fiber laser. Applied Physics Letters, 2018, 113, .	3.3	26
48	Synthesis of carbon nanotubes–Fe–Al2O3 powders Materials Research Bulletin, 2000, 35, 661-673.	5.2	25
49	Millimeter wave carbon nanotube gas sensor. Journal of Applied Physics, 2007, 101, 106103.	2.5	24
50	Thermal Behavior of Fluorinated Double-Walled Carbon Nanotubes. Chemistry of Materials, 2006, 18, 4967-4971.	6.7	23
51	X-ray diffraction as a tool for the determination of the structure of double-walled carbon nanotube batches. Physical Review B, 2009, 79, .	3.2	22
52	Double-Walled Carbon Nanotubes in Composite Powders. Journal of Nanoscience and Nanotechnology, 2003, 3, 151-158.	0.9	21
53	Surface area of carbon-based nanoparticles prevails on dispersion for growth inhibition in amphibians. Carbon, 2017, 119, 72-81.	10.3	20
54	Field electron emission of double walled carbon nanotube film prepared by drop casting method. Solid-State Electronics, 2007, 51, 788-792.	1.4	19

#	Article	IF	CITATIONS
55	Magneto-Coulomb Effect in Carbon Nanotube Quantum Dots Filled with Magnetic Nanoparticles. Physical Review Letters, 2011, 107, 186804.	7.8	19
56	Preferred attachment of fluorine near oxygen-containing groups on the surface of double-walled carbon nanotubes. Applied Surface Science, 2020, 504, 144357.	6.1	19
57	Probing the electronic properties of individual carbon nanotube in 35 T pulsed magnetic field. Chemical Physics Letters, 2003, 372, 733-738.	2.6	17
58	A single-molecule approach to explore binding, uptake and transport of cancer cell targeting nanotubes. Nanotechnology, 2014, 25, 125704.	2.6	15
59	Light scattering of double wall carbon nanotubes under hydrostatic pressure: pressure effects on the internal and external tubes. Physica Status Solidi (B): Basic Research, 2004, 241, 3360-3366.	1.5	14
60	Surface Properties, Porosity, Chemical and Electrochemical Applications. , 2006, , 495-549.		14
61	Similarities in the Raman RBM and D bands in double-wall carbon nanotubes. Physical Review B, 2005, 72, .	3.2	13
62	High performance thin film bulk acoustic resonator covered with carbon nanotubes. Applied Physics Letters, 2006, 89, 143122.	3.3	13
63	Hydrophobic double walled carbon nanotubes interaction with phopholipidic model membranes: 1H-, 2H-, 31P NMR and ESR study. Environmental Toxicology and Pharmacology, 2010, 30, 147-152.	4.0	12
64	Formation of Nanofibers and Nanotubes Production. , 2004, , 1-129.		10
65	Effect of ultrasound pretreatment on bromination of double-walled carbon nanotubes. Synthetic Metals, 2020, 259, 116233.	3.9	10
66	Optical Absorption and Raman Spectroscopy Study of the Fluorinated Doubleâ€Wall Carbon Nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2006, 14, 233-238.	2.1	9
67	The Unexpected Complexity of Filling Double-Wall Carbon Nanotubes With Nickel (and Iodine) 1-D Nanocrystals. IEEE Nanotechnology Magazine, 2017, 16, 759-766.	2.0	7
68	Synthesis of 1D P-block halide crystals within single walled carbon nanotubes. AIP Conference Proceedings, 2001, , .	0.4	6
69	Carbon nanotubes-based microwave and millimeter wave sensors. , 2007, , .		6
70	Observation of strong Kondo like features and co-tunnelling in superparamagnetic GdCl3 filled 1D nanomagnets. Journal of Applied Physics, 2018, 123, .	2.5	6
71	The characterization of sub-nanometer scale structures within single walled carbon nanotubes. AIP Conference Proceedings, 2001, , .	0.4	5
72	Influence of carbonaceous electrodes on capacitance and breakdown voltage for hybrid capacitor. Microelectronics Journal, 2007, 38, 642-648.	2.0	4

#	Article	IF	CITATIONS
73	Pressure dependence of Raman modes in DWCNT filled with PbI2 semiconductor. Physica Status Solidi (B): Basic Research, 2007, 244, 136-141.	1.5	4
74	Carbon nanotube-based polymer composites for microwave applications. , 2008, , .		4
75	Filling of Carbon Nanotubes with Compounds in Solution or Melted Phase. Carbon Nanostructures, 2011, , 41-65.	0.1	4
76	Electrical properties and reactivity under air–CO flows of composite systems based on ceria coated carbon nanotubes. Chemical Engineering Journal, 2011, 171, 272-278.	12.7	4
77	Study of cytotoxicity performance of carbon nanohorns by method of spin probes. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 737-744.	2.1	3
78	The Crystallography of Metal Halides formed within Single Walled Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2000, 633, 14311.	0.1	2
79	Tunability of Carbon NanoTubes Resistance Deposited by Inkjet Printing at Low Temperature. Materials Research Society Symposia Proceedings, 2010, 1258, 1.	0.1	2
80	Toxicity and Environmental Impact of Carbon Nanotubes. Carbon Nanostructures, 2011, , 211-219.	0.1	2
81	1D P-Block Halide Crystals Confined into Single Walled Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2000, 633, 13151.	0.1	1
82	Observation of a superparamagnetic breakdown in gadolinium chloride filled double-walled carbon nanotubes. AIP Advances, 2021, 11, 035206.	1.3	1
83	Double-walled carbon nanotubes suspending by natural active substances (saponins and humic acids). MATEC Web of Conferences, 2013, 5, 04027.	0.2	0
84	The unexpected complexity of filling double-wall carbon nanotubes with iodine-based 1D nanocrystals. , 2016, , .		0
85	Double-Walled Carbon Nanotubes: Synthesis and Filling by 1-D Nanocrystals. , 2005, , 281-286.		0