Guofeng Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/119215/publications.pdf Version: 2024-02-01

CHOFENC CHENC

#	Article	IF	CITATIONS
1	Circulating miRNAs: Roles in cancer diagnosis, prognosis and therapy. Advanced Drug Delivery Reviews, 2015, 81, 75-93.	13.7	279
2	MicroRNAs: New Regulators of Toll-Like Receptor Signalling Pathways. BioMed Research International, 2014, 2014, 1-14.	1.9	174
3	Molecular characterization of S. japonicum exosome-like vesicles reveals their regulatory roles in parasite-host interactions. Scientific Reports, 2016, 6, 25885.	3.3	124
4	Deep sequencing-based identification of pathogen-specific microRNAs in the plasma of rabbits infected with <i>Schistosoma japonicum</i> . Parasitology, 2013, 140, 1751-1761.	1.5	97
5	Schistosoma japonicum extracellular vesicle miRNA cargo regulates host macrophage functions facilitating parasitism. PLoS Pathogens, 2019, 15, e1007817.	4.7	87
6	MicroRNAs Are Involved in the Regulation of Ovary Development in the Pathogenic Blood Fluke Schistosoma japonicum. PLoS Pathogens, 2016, 12, e1005423.	4.7	64
7	<i>In vitro</i> and <i>in vivo</i> evaluation of small interference RNAâ€mediated gynaecophoral canal protein silencing in <i>Schistosoma japonicum</i> . Journal of Gene Medicine, 2009, 11, 412-421.	2.8	48
8	Role of microRNAs in schistosomes and schistosomiasis. Frontiers in Cellular and Infection Microbiology, 2014, 4, 165.	3.9	44
9	Caspase-3 Gene Silencing for Inhibiting Apoptosis in Insulinoma Cells and Human Islets. Molecular Pharmaceutics, 2008, 5, 1093-1102.	4.6	36
10	The Flatworm Spliced Leader 3′-Terminal AUG as a Translation Initiator Methionine*. Journal of Biological Chemistry, 2006, 281, 733-743.	3.4	27
11	MicroRNAs: Potentially important regulators for schistosome development and therapeutic targets against schistosomiasis. Parasitology, 2012, 139, 669-679.	1.5	27
12	Molecular characterizations of an inhibitor of apoptosis from Schistosoma japonicum. Parasitology Research, 2010, 106, 967-976.	1.6	23
13	An improved and secreted luciferase reporter for schistosomes. Molecular and Biochemical Parasitology, 2007, 155, 167-171.	1.1	20
14	Molecular cloning and expression profiles of Argonaute proteins in Schistosoma japonicum. Parasitology Research, 2010, 107, 889-899.	1.6	18
15	In vivo translation and stability of trans-spliced mRNAs in nematode embryos. Molecular and Biochemical Parasitology, 2007, 153, 95-106.	1.1	17
16	Identification of in vivo protein phosphorylation sites in human pathogen Schistosoma japonicum by a phosphoproteomic approach. Journal of Proteomics, 2012, 75, 868-877.	2.4	16
17	Host miR-148 regulates a macrophage-mediated immune response during Schistosoma japonicum infection. International Journal for Parasitology, 2019, 49, 993-997.	3.1	16
18	Roles of microRNAs in T cell immunity: Implications for strategy development against infectious diseases. Medicinal Research Reviews, 2019, 39, 706-732.	10.5	16

GUOFENG CHENG

#	Article	IF	CITATIONS
19	Proteomic and deep sequencing analysis of extracellular vesicles isolated from adult male and female Schistosoma japonicum. PLoS Neglected Tropical Diseases, 2020, 14, e0008618.	3.0	16
20	Molecular characterization of a cytokine-induced apoptosis inhibitor from Schistosoma japonicum. Parasitology Research, 2012, 111, 2317-2324.	1.6	13
21	TiO ₂ -Based Phosphoproteomic Analysis of Schistosomes: Characterization of Phosphorylated Proteins in the Different Stages and Sex of <i>Schistosoma japonicum</i> . Journal of Proteome Research, 2013, 12, 729-742.	3.7	13
22	Schistosoma japonicum IAP and Teg20 safeguard tegumental integrity by inhibiting cellular apoptosis. PLoS Neglected Tropical Diseases, 2018, 12, e0006654.	3.0	12
23	Altered levels of circulating miRNAs are associated Schistosoma japonicum infection in mice. Parasites and Vectors, 2015, 8, 196.	2.5	11
24	Recent advances in nucleic acid-based methods for detection of helminth infections and the perspective of biosensors for future development. Parasitology, 2020, 147, 383-392.	1.5	11
25	RNA sequencing analysis of altered expression of long noncoding RNAs associated with Schistosoma japonicum infection in the murine liver and spleen. Parasites and Vectors, 2020, 13, 601.	2.5	11
26	Exosome-like vesicles of helminths: implication of pathogenesis and vaccine development. Annals of Translational Medicine, 2017, 5, 175-175.	1.7	11
27	Evaluation of protective immune response in mice by vaccination the recombinant adenovirus for expressing Schistosoma japonicum inhibitor apoptosis protein. Parasitology Research, 2014, 113, 4261-4269.	1.6	10
28	Preliminary evaluation of the diagnostic potential of Schistosoma japonicum extracellular vesicle proteins for Schistosomiasis japonica. Acta Tropica, 2020, 201, 105184.	2.0	10
29	Molecular characterization of SjBIRP, another apoptosis inhibitor, from Schistosoma japonicum. Parasitology Research, 2014, 113, 4065-4071.	1.6	8
30	Isolation and Characterization of Extracellular Vesicles from Adult Schistosoma japonicum . Journal of Visualized Experiments, 2018, , .	0.3	8
31	Transcriptional profiles of genes potentially involved in extracellular vesicle biogenesis in Schistosoma japonicum. Acta Tropica, 2021, 217, 105851.	2.0	8
32	Antioxidants resveratrol and SkQ1 attenuate praziquantel adverse effects on the liver in Opisthorchis felineus infected hamsters. Acta Tropica, 2021, 220, 105954.	2.0	8
33	Design and Application of a Solar Mobile Pond Aquaculture Water Quality-Regulation Machine Based in Bream Pond Aquaculture. PLoS ONE, 2016, 11, e0146637.	2.5	6
34	Molecular characterization, expression profile, and preliminary evaluation of diagnostic potential of CD63 in Schistosoma japonicum. Parasitology Research, 2018, 117, 3625-3631.	1.6	6
35	14-3-3 protein and ubiquitin C acting as SjIAP interaction partners facilitate tegumental integrity in Schistosoma japonicum. International Journal for Parasitology, 2019, 49, 355-364.	3.1	5
36	Characterization of MicroRNA Cargo of Extracellular Vesicles Isolated From the Plasma of Schistosoma japonicum-Infected Mice. Frontiers in Cellular and Infection Microbiology, 2022, 12, 803242.	3.9	4

GUOFENG CHENG

#	Article	IF	CITATIONS
37	Preliminary evaluation of neoblast-like stem cell factor and transcript expression profiles in Schistosoma japonicum. Acta Tropica, 2018, 187, 57-64.	2.0	3
38	Molecular characterization and expression profile of nanos in Schistosoma japonicum and its influence on the expression several mammalian stem cell factors. Parasitology Research, 2017, 116, 1947-1954.	1.6	2
39	Identification of Schistosoma japonicum GSK3β interacting partners by yeast two-hybrid screening and its role in parasite survival. Parasitology Research, 2020, 119, 2217-2226.	1.6	2
40	In silico analysis of endogenous siRNAs associated transposable elements and NATs in Schistosoma japonicum reveals their putative roles during reproductive development. Parasitology Research, 2018, 117, 1549-1558.	1.6	1
41	MicroRNAs, T-cell immunity and immunotherapy. Future Medicinal Chemistry, 2019, 11, 2043-2045.	2.3	1
42	Genome-wide identification of circular RNAs in adult Schistosoma japonicum. International Journal for Parasitology, 2022, , .	3.1	0