Gabor Forgacs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11919659/publications.pdf

Version: 2024-02-01

67 papers

9,695 citations

35 h-index 214800 47 g-index

70 all docs

70 docs citations

70 times ranked

8900 citing authors

#	Article	IF	CITATIONS
1	Physics of bioprinting. Applied Physics Reviews, 2019, 6, .	11.3	32
2	Biofabrication: A Guide to Technology and Terminology. Trends in Biotechnology, 2018, 36, 384-402.	9.3	465
3	Advanced Cell and Tissue Biomanufacturing. ACS Biomaterials Science and Engineering, 2018, 4, 2292-2307.	5.2	14
4	Self-assembly of tissue spheroids on polymeric membranes. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2090-2103.	2.7	12
5	Biofabrication: reappraising the definition of an evolving field. Biofabrication, 2016, 8, 013001.	7.1	523
6	Post-deposition bioink self-assembly: a quantitative study. Biofabrication, 2015, 7, 045005.	7.1	53
7	Bioprinting of Nerve. , 2015, , 379-394.		3
8	Predictive modeling of post bioprinting structure formation. Soft Matter, 2014, 10, 1790-1800.	2.7	52
9	Biofabrication and testing of a fully cellular nerve graft. Biofabrication, 2013, 5, 045007.	7.1	174
10	How cholesterol regulates endothelial biomechanics. Frontiers in Physiology, 2012, 3, 426.	2.8	22
11	Colloquium: Modeling the dynamics of multicellular systems: Application to tissue engineering. Reviews of Modern Physics, 2012, 84, 1791-1805.	45.6	39
12	Kinetic Monte Carlo and cellular particle dynamics simulations of multicellular systems. Physical Review E, 2012, 85, 031907.	2.1	51
13	Perfusable vascular networks. Nature Materials, 2012, 11, 746-747.	27.5	19
14	Computational Modeling of Tissue Self-Assembly. , 2012, , 251-272.		6
15	Fusion of uniluminal vascular spheroids: A model for assembly of blood vessels. Developmental Dynamics, 2010, 239, 398-406.	1.8	108
16	Fusion of uniluminal vascular spheroids: A model for assembly of blood vessels. Developmental Dynamics, 2010, 239, spcone-spcone.	1.8	0
17	Fusion of uniluminal vascular spheroids: A model for assembly of blood vessels. Developmental Dynamics, 2010, 239, spcone-spcone.	1.8	0
18	Computational modeling of epithelial–mesenchymal transformations. BioSystems, 2010, 100, 23-30.	2.0	21

#	Article	IF	Citations
19	Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication, 2010, 2, 022001.	7.1	492
20	Organ printing: Tissue spheroids as building blocks. Biomaterials, 2009, 30, 2164-2174.	11.4	1,106
21	Scaffold-free vascular tissue engineering using bioprinting. Biomaterials, 2009, 30, 5910-5917.	11.4	1,193
22	Microenvironmental Regulation of Ovarian Cancer Metastasis. Cancer Treatment and Research, 2009, 149, 319-334.	0.5	46
23	Relating cell and tissue mechanics: Implications and applications. Developmental Dynamics, 2008, 237, 2438-2449.	1.8	72
24	Limb bud and flank mesoderm have distinct "physical phenotypes―that may contribute to limb budding. Developmental Biology, 2008, 321, 319-330.	2.0	38
25	Tissue Engineering by Self-Assembly of Cells Printed into Topologically Defined Structures. Tissue Engineering - Part A, 2008, 14, 413-421.	3.1	337
26	Relating Biophysical Properties Across Scales. Current Topics in Developmental Biology, 2008, 81, 461-483.	2.2	38
27	Cell Spreading Analysis with Directed Edge Profile-Guided Level Set Active Contours. Lecture Notes in Computer Science, 2008, 11 , 376-383.	1.3	15
28	Reversible Disassembly of the Actin Cytoskeleton Improves the Survival Rate and Developmental Competence of Cryopreserved Mouse Oocytes. PLoS ONE, 2008, 3, e2787.	2.5	29
29	Eukaryotic membrane tethers revisited using magnetic tweezers. Physical Biology, 2007, 4, 67-78.	1.8	44
30	The effect of cellular cholesterol on membrane-cytoskeleton adhesion. Journal of Cell Science, 2007, 120, 2223-2231.	2.0	170
31	Developmental biology and tissue engineering. Birth Defects Research Part C: Embryo Today Reviews, 2007, 81, 320-328.	3 . 6	94
32	Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. Journal of Cellular Biochemistry, 2007, 101, 695-711.	2.6	530
33	Bioprinting living structures. Journal of Materials Chemistry, 2007, 17, 2054.	6.7	114
34	The Interplay of Cell-Cell and Cell-Matrix Interactions in the Invasive Properties of Brain Tumors. Biophysical Journal, 2006, 91, 2708-2716.	0.5	110
35	Before programs: The physical origination of multicellular forms. International Journal of Developmental Biology, 2006, 50, 289-299.	0.6	149
36	COMPUTATIONAL MODELING OF TISSUE SELF-ASSEMBLY. Modern Physics Letters B, 2006, 20, 1217-1231.	1.9	37

#	Article	IF	Citations
37	Engineering Blood Vessels from Lumenized Vascular Tissue Spheroids. FASEB Journal, 2006, 20, A436.	0.5	O
38	Three-dimensional tissue constructs built by bioprinting. Biorheology, 2006, 43, 509-13.	0.4	80
39	The cell: fundamental unit of developmental systems. , 2005, , 6-23.		O
40	Fertilization: generating one living dynamical system from two. , 2005, , 223-247.		0
41	Cell states: stability, oscillation, differentiation. , 2005, , 51-76.		O
42	Pattern formation: segmentation, axes, and asymmetry., 2005, , 155-187.		0
43	Evolution of developmental mechanisms. , 2005, , 248-272.		O
44	Introduction: Biology and physics. , 2005, , 1-5.		0
45	Cleavage and blastula formation. , 2005, , 24-50.		2
46	Cell adhesion, compartmentalization, and lumen formation., 2005,, 77-98.		0
47	Epithelial morphogenesis: gastrulation and neurulation. , 2005, , 99-130.		O
48	Mesenchymal morphogenesis., 2005,, 131-154.		0
49	Organogenesis., 2005,, 188-222.		O
50	Role of Physical Mechanisms in Biological Self-Organization. Physical Review Letters, 2005, 95, 178104.	7.8	69
51	Multiple Membrane Tethers Probed by Atomic Force Microscopy. Biophysical Journal, 2005, 89, 4320-4329.	0.5	182
52	Role of the cytoskeleton in signaling networks. Journal of Cell Science, 2004, 117, 2769-2775.	2.0	75
53	Phase transformations in a model mesenchymal tissue. Physical Biology, 2004, 1, 100-109.	1.8	24
54	Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2864-2869.	7.1	344

#	Article	IF	CITATIONS
55	Biological Relevance of Tissue Liquidity and Viscoelasticity. , 2004, , 269-277.		5
56	Organ printing: computer-aided jet-based 3D tissue engineering. Trends in Biotechnology, 2003, 21, 157-161.	9.3	1,127
57	Assembly of Collagen Matrices as a Phase Transition Revealed by Structural and Rheologic Studies. Biophysical Journal, 2003, 84, 1272-1280.	0.5	129
58	Magnetic tweezers for intracellular applications. Review of Scientific Instruments, 2003, 74, 4158-4163.	1.3	112
59	Mechanotransduction through the cytoskeleton. American Journal of Physiology - Cell Physiology, 2002, 282, C479-C486.	4.6	90
60	Modeling the interplay of generic and genetic mechanisms in cleavage, blastulation, and gastrulation. , 2000, 219, 182.		3
61	Modeling the interplay of generic and genetic mechanisms in cleavage, blastulation, and gastrulation. Developmental Dynamics, 2000, 219, 182-191.	1.8	89
62	Viscoelastic Properties of Living Embryonic Tissues: a Quantitative Study. Biophysical Journal, 1998, 74, 2227-2234.	0.5	432
63	Liquid properties of embryonic tissues: Measurement of interfacial tensions. Physical Review Letters, 1994, 72, 2298-2301.	7.8	256
64	Phase Transitions, Interfaces, and Morphogenesis in a Network of Protein Fibers. International Review of Cytology, 1994, 150, 139-148.	6.2	21
65	Wetting, percolation and morphogenesis in a model tissue system. Journal of Theoretical Biology, 1989, 140, 417-430.	1.7	32
66	Cellular aggregates under pressure. Physics Magazine, 0, 3, .	0.1	4
67	Tissue Engineering by Self-Assembly of Cells Printed into Topologically Defined Structures. Tissue Engineering, 0, , 110306233438005.	4.6	200