Keng-Ku Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11919440/publications.pdf

Version: 2024-02-01

47 papers

6,548 citations

28 h-index

186265

42 g-index

47 all docs

47 docs citations

47 times ranked

10890 citing authors

#	Article	IF	CITATIONS
1	Growth of Large-Area and Highly Crystalline MoS ₂ Thin Layers on Insulating Substrates. Nano Letters, 2012, 12, 1538-1544.	9.1	1,749
2	Highly Flexible MoS ₂ Thin-Film Transistors with Ion Gel Dielectrics. Nano Letters, 2012, 12, 4013-4017.	9.1	746
3	Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale, 2012, 4, 6637.	5.6	621
4	Few-Layer MoS ₂ with High Broadband Photogain and Fast Optical Switching for Use in Harsh Environments. ACS Nano, 2013, 7, 3905-3911.	14.6	584
5	Wood–Graphene Oxide Composite for Highly Efficient Solar Steam Generation and Desalination. ACS Applied Materials & Desalination. ACS Applied Materials & Desalination. ACS	8.0	505
6	Bilayered Biofoam for Highly Efficient Solar Steam Generation. Advanced Materials, 2016, 28, 9400-9407.	21.0	457
7	Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition. Nano Letters, 2011, 11, 3612-3616.	9.1	302
8	Plasmonic Biofoam: A Versatile Optically Active Material. Nano Letters, 2016, 16, 609-616.	9.1	161
9	Labelâ€Free Electrical Detection of DNA Hybridization on Graphene using Hall Effect Measurements: Revisiting the Sensing Mechanism. Advanced Functional Materials, 2013, 23, 2301-2307.	14.9	114
10	Size-Dependent Surface Enhanced Raman Scattering Activity of Plasmonic Nanorattles. Chemistry of Materials, 2015, 27, 5261-5270.	6.7	82
11	Peptide Functionalized Gold Nanorods for the Sensitive Detection of a Cardiac Biomarker Using Plasmonic Paper Devices. Scientific Reports, 2015, 5, 16206.	3.3	82
12	Growth selectivity of hexagonal-boron nitride layers on Ni with various crystal orientations. RSC Advances, 2012, 2, 111-115.	3.6	72
13	Bacterial Nanocelluloseâ€Based Flexible Surface Enhanced Raman Scattering Substrate. Advanced Materials Interfaces, 2016, 3, 1600214.	3.7	72
14	Plasmonic Nanorattles with Intrinsic Electromagnetic Hotâ€Spots for Surface Enhanced Raman Scattering. Small, 2014, 10, 4287-4292.	10.0	69
15	Hydrophilic, Bactericidal Nanoheater-Enabled Reverse Osmosis Membranes to Improve Fouling Resistance. ACS Applied Materials & Interfaces, 2015, 7, 11117-11126.	8.0	67
16	Nanoantenna–Microcavity Hybrids with Highly Cooperative Plasmonic–Photonic Coupling. Nano Letters, 2017, 17, 7569-7577.	9.1	64
17	Flexible solid-state supercapacitor based on tin oxide/reduced graphene oxide/bacterial nanocellulose. RSC Advances, 2018, 8, 31296-31302.	3.6	62
18	Catalytically Active Bacterial Nanocelluloseâ€Based Ultrafiltration Membrane. Small, 2018, 14, e1704006.	10.0	59

#	Article	IF	CITATIONS
19	Add-on plasmonic patch as a universal fluorescence enhancer. Light: Science and Applications, 2018, 7, 29.	16.6	58
20	Metalâ€Organic Framework as a Protective Coating for Biodiagnostic Chips. Advanced Materials, 2017, 29, 1604433.	21.0	56
21	Photothermally Active Reduced Graphene Oxide/Bacterial Nanocellulose Composites as Biofouling-Resistant Ultrafiltration Membranes. Environmental Science & Environmental Science & 2019, 53, 412-421.	10.0	56
22	An in situ grown bacterial nanocellulose/graphene oxide composite for flexible supercapacitors. Journal of Materials Chemistry A, 2017, 5, 13976-13982.	10.3	53
23	Plasmonic Nanogels for Unclonable Optical Tagging. ACS Applied Materials & Diterfaces, 2016, 8, 4031-4041.	8.0	46
24	PEGylated Artificial Antibodies: Plasmonic Biosensors with Improved Selectivity. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 23509-23516.	8.0	40
25	Electrical Probing of Submicroliter Liquid Using Graphene Strip Transistors Built on a Nanopipette. Small, 2012, 8, 43-46.	10.0	38
26	Gold nanocages with built-in artificial antibodies for label-free plasmonic biosensing. Journal of Materials Chemistry B, 2014, 2, 167-170.	5.8	38
27	Multiplexed charge-selective surface enhanced Raman scattering based on plasmonic calligraphy. Journal of Materials Chemistry C, 2014, 2, 5438.	5.5	38
28	Gold Nanorod Size-Dependent Fluorescence Enhancement for Ultrasensitive Fluoroimmunoassays. ACS Applied Materials & Diterfaces, 2021, 13, 11414-11423.	8.0	29
29	Transfer printing of graphene strip from the graphene grown on copper wires. Nanotechnology, 2011, 22, 185309.	2.6	28
30	Shape-Dependent Biodistribution of Biocompatible Silk Microcapsules. ACS Applied Materials & Samp; Interfaces, 2019, 11, 5499-5508.	8.0	27
31	Bioplasmonic calligraphy for multiplexed label-free biodetection. Biosensors and Bioelectronics, 2014, 59, 208-215.	10.1	26
32	Plasmonic paper: a porous and flexible substrate enabling nanoparticle-based combinatorial chemistry. RSC Advances, 2016, 6, 4136-4144.	3.6	21
33	Silk-Encapsulated Plasmonic Biochips with Enhanced Thermal Stability. ACS Applied Materials & Samp; Interfaces, 2016, 8, 26493-26500.	8.0	20
34	Polarization-Dependent Surface-Enhanced Raman Scattering Activity of Anisotropic Plasmonic Nanorattles. Journal of Physical Chemistry C, 2016, 120, 16899-16906.	3.1	18
35	Influence of Surface Charge of the Nanostructures on the Biocatalytic Activity. Langmuir, 2017, 33, 6611-6619.	3.5	15
36	Peptide Functionalized Gold Nanorods for the Sensitive Detection of a Cardiac Biomarker Using Plasmonic Paper Devices. Scientific Reports, 2015, 5, .	3.3	15

#	Article	IF	CITATIONS
37	Foams: Bilayered Biofoam for Highly Efficient Solar Steam Generation (Adv. Mater. 42/2016). Advanced Materials, 2016, 28, 9234-9234.	21.0	13
38	Structure-dependent SERS activity of plasmonic nanorattles with built-in electromagnetic hotspots. Analyst, The, 2017, 142, 4536-4543.	3 . 5	13
39	Efficient reduction of graphene oxide catalyzed by copper. Physical Chemistry Chemical Physics, 2012, 14, 3083.	2.8	12
40	Self-Powered Forward Error-Correcting Biosensor Based on Integration of Paper-Based Microfluidics and Self-Assembled Quick Response Codes. IEEE Transactions on Biomedical Circuits and Systems, 2016, 10, 963-971.	4.0	12
41	Elastoplastic Deformation of Silk Micro- and Nanostructures. ACS Biomaterials Science and Engineering, 2016, 2, 893-899.	5.2	5
42	Towards an Integrated QR Code Biosensor: Light-Driven Sample Acquisition and Bacterial Cellulose Paper Substrate. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12, 452-460.	4.0	2
43	Nanoantenna-microcavity hybrid resonators with highly cooperative plasmonic-photonic coupling. , 2017, , .		1
44	Photonic crystal coupled plasmonic hybrid nanosensors. , 2016, , .		0
45	Nanocellulose Films: Bacterial Nanocellulose-Based Flexible Surface Enhanced Raman Scattering Substrate (Adv. Mater. Interfaces 15/2016). Advanced Materials Interfaces, 2016, 3, .	3.7	O
46	Boosting Local Field Enhancement by Synergistic Nanoantennaâ^'Microcavity Coupling. , 2018, , .		0
47	Resonant coupling from photonic crystal surfaces to plasmonic nanoantennas: principles, detection instruments, and applications in digital resolution biosensing. , 2018, , .		O