Jann N Sarkaria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1191913/publications.pdf

Version: 2024-02-01

23514 50244 13,697 172 46 111 citations h-index g-index papers 174 174 174 19144 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 2010, 17, 98-110.	7.7	6,138
2	Is the blood–brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro-Oncology, 2018, 20, 184-191.	0.6	443
3	Mechanisms of Chemoresistance to Alkylating Agents in Malignant Glioma. Clinical Cancer Research, 2008, 14, 2900-2908.	3.2	319
4	Patient tumor EGFR and PDGFRA gene amplifications retained in an invasive intracranial xenograft model of glioblastoma multiforme. Neuro-Oncology, 2005, 7, 164-176.	0.6	296
5	Induction of MGMT expression is associated with temozolomide resistance in glioblastoma xenografts. Neuro-Oncology, 2009, 11, 281-291.	0.6	289
6	Use of an Orthotopic Xenograft Model for Assessing the Effect of Epidermal Growth Factor Receptor Amplification on Glioblastoma Radiation Response. Clinical Cancer Research, 2006, 12, 2264-2271.	3.2	242
7	Strategies to improve delivery of anticancer drugs across the blood–brain barrier to treat glioblastoma. Neuro-Oncology, 2016, 18, 27-36.	0.6	210
8	The Bromodomain protein BRD4 controls HOTAIR, a long noncoding RNA essential for glioblastoma proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8326-8331.	3.3	186
9	Establishment, Maintenance, and In Vitro and In Vivo Applications of Primary Human Glioblastoma Multiforme (GBM) Xenograft Models for Translational Biology Studies and Drug Discovery. Current Protocols in Pharmacology, 2011, 52, Unit 14.16.	4.0	185
10	A novel enhancer regulates MGMT expression and promotes temozolomide resistance in glioblastoma. Nature Communications, 2018, 9, 2949.	5.8	183
11	Radiogenomics to characterize regional genetic heterogeneity in glioblastoma. Neuro-Oncology, 2017, 19, 128-137.	0.6	170
12	Inhibition of Histone Deacetylation Potentiates the Evolution of Acquired Temozolomide Resistance Linked to MGMT Upregulation in Glioblastoma Xenografts. Clinical Cancer Research, 2012, 18, 4070-4079.	3.2	127
13	A phase II trial of everolimus, temozolomide, and radiotherapy in patients with newly diagnosed glioblastoma: NCCTG N057K. Neuro-Oncology, 2015, 17, 1261-1269.	0.6	126
14	Genomic and Phenotypic Characterization of a Broad Panel of Patient-Derived Xenografts Reflects the Diversity of Glioblastoma. Clinical Cancer Research, 2020, 26, 1094-1104.	3.2	124
15	BET bromodomain proteins are required for glioblastoma cell proliferation. Epigenetics, 2014, 9, 611-620.	1.3	123
16	Glut3 Addiction Is a Druggable Vulnerability for a Molecularly Defined Subpopulation of Glioblastoma. Cancer Cell, 2017, 32, 856-868.e5.	7.7	121
17	Combining precision radiotherapy with molecular targeting and immunomodulatory agents: a guideline by the American Society for Radiation Oncology. Lancet Oncology, The, 2018, 19, e240-e251.	5.1	108
18	Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma. PLoS ONE, 2015, 10, e0141506.	1.1	104

#	Article	IF	CITATIONS
19	Purine metabolism regulates DNA repair and therapy resistance in glioblastoma. Nature Communications, 2020, 11, 3811.	5.8	103
20	Delineation of <i>MGMT</i> Hypermethylation as a Biomarker for Veliparib-Mediated Temozolomide-Sensitizing Therapy of Glioblastoma. Journal of the National Cancer Institute, 2015, 108, djv369.	3.0	102
21	Inhibition of multidrug resistance protein 1 (MRP1) improves chemotherapy drug response in primary and recurrent glioblastoma multiforme. Frontiers in Neuroscience, 2015, 9, 218.	1.4	96
22	DNA Repair Capacity in Multiple Pathways Predicts Chemoresistance in Glioblastoma Multiforme. Cancer Research, 2017, 77, 198-206.	0.4	96
23	Phase I/II trial of vorinostat combined with temozolomide and radiation therapy for newly diagnosed glioblastoma: results of Alliance N0874/ABTC 02. Neuro-Oncology, 2018, 20, 546-556.	0.6	93
24	Factors Influencing the CNS Distribution of a Novel MEK-1/2 Inhibitor: Implications for Combination Therapy for Melanoma Brain Metastases. Drug Metabolism and Disposition, 2014, 42, 1292-1300.	1.7	89
25	The Efficacy of the Wee1 Inhibitor MK-1775 Combined with Temozolomide Is Limited by Heterogeneous Distribution across the Blood–Brain Barrier in Glioblastoma. Clinical Cancer Research, 2015, 21, 1916-1924.	3.2	86
26	Immunovirotherapy with measles virus strains in combination with anti–PD-1 antibody blockade enhances antitumor activity in glioblastoma treatment. Neuro-Oncology, 2017, 19, now179.	0.6	85
27	Efflux Transporters at the Blood-Brain Barrier Limit Delivery and Efficacy of Cyclin-Dependent Kinase 4/6 Inhibitor Palbociclib (PD-0332991) in an Orthotopic Brain Tumor Model. Journal of Pharmacology and Experimental Therapeutics, 2015, 355, 264-271.	1.3	84
28	Constitutive Interferon Pathway Activation in Tumors as an Efficacy Determinant Following Oncolytic Virotherapy. Journal of the National Cancer Institute, 2018, 110, 1123-1132.	3.0	83
29	A TNF–JNK–Axl–ERK signaling axis mediates primary resistance to EGFR inhibition in glioblastoma. Nature Neuroscience, 2017, 20, 1074-1084.	7.1	82
30	Distinctive epigenomes characterize glioma stem cells and their response to differentiation cues. Genome Biology, 2018, 19, 43.	3.8	81
31	Drug and disease signature integration identifies synergistic combinations in glioblastoma. Nature Communications, 2018, 9, 5315.	5.8	78
32	Radiosensitizing Effects of Temozolomide Observed in vivo only in a Subset of O6-Methylguanine-DNA Methyltransferase Methylated Glioblastoma Multiforme Xenografts. International Journal of Radiation Oncology Biology Physics, 2009, 75, 212-219.	0.4	77
33	Bioluminescence monitoring of intracranial glioblastoma xenograft: response to primary and salvage temozolomide therapy. Journal of Neurosurgery, 2007, 107, 610-616.	0.9	74
34	Influence of Hyaluronic Acid Transitions in Tumor Microenvironment on Glioblastoma Malignancy and Invasive Behavior. Frontiers in Materials, 2018, 5, .	1.2	74
35	H3.3K27M mutant proteins reprogram epigenome by sequestering the PRC2 complex to poised enhancers. ELife, 2018, 7, .	2.8	72
36	Localized Metabolomic Gradients in Patient-Derived Xenograft Models of Glioblastoma. Cancer Research, 2020, 80, 1258-1267.	0.4	67

#	Article	IF	CITATIONS
37	Integrated mapping of pharmacokinetics and pharmacodynamics in a patient-derived xenograft model of glioblastoma. Nature Communications, 2018, 9, 4904.	5.8	62
38	A genome-wide miRNA screen revealed miR-603 as a MGMT-regulating miRNA in glioblastomas. Oncotarget, 2014, 5, 4026-4039.	0.8	62
39	PARP Inhibitors for Sensitization of Alkylation Chemotherapy in Glioblastoma: Impact of Blood-Brain Barrier and Molecular Heterogeneity. Frontiers in Oncology, 2018, 8, 670.	1.3	60
40	ATR Inhibition Is a Promising Radiosensitizing Strategy for Triple-Negative Breast Cancer. Molecular Cancer Therapeutics, 2018, 17, 2462-2472.	1.9	59
41	InsR/IGF1R Pathway Mediates Resistance to EGFR Inhibitors in Glioblastoma. Clinical Cancer Research, 2016, 22, 1767-1776.	3.2	58
42	Retinoblastoma Binding Protein 4 Modulates Temozolomide Sensitivity in Glioblastoma by Regulating DNA Repair Proteins. Cell Reports, 2016, 14, 2587-2598.	2.9	58
43	Restricted Delivery of Talazoparib Across the Blood–Brain Barrier Limits the Sensitizing Effects of PARP Inhibition on Temozolomide Therapy in Glioblastoma. Molecular Cancer Therapeutics, 2017, 16, 2735-2746.	1.9	58
44	ST3GAL1 is a target of the SOX2-GLI1 transcriptional complex and promotes melanoma metastasis through AXL. Nature Communications, 2020, 11, 5865.	5.8	54
45	Barriers to Effective Drug Treatment for Brain Metastases: A Multifactorial Problem in the Delivery of Precision Medicine. Pharmaceutical Research, 2018, 35, 177.	1.7	53
46	Src family kinases differentially influence glioma growth and motility. Molecular Oncology, 2015, 9, 1783-1798.	2.1	52
47	The medical necessity of advanced molecular testing in the diagnosis and treatment of brain tumor patients. Neuro-Oncology, 2019, 21, 1498-1508.	0.6	49
48	Expression of CD74 in high grade gliomas: a potential role in temozolomide resistance. Journal of Neuro-Oncology, 2010, 100, 177-186.	1.4	48
49	Phase I Trial of Sirolimus Combined with Radiation and Cisplatin in Non-small Cell Lung Cancer. Journal of Thoracic Oncology, 2007, 2, 751-757.	0.5	47
50	Molecular profiling of long-term IDH-wildtype glioblastoma survivors. Neuro-Oncology, 2019, 21, 1458-1469.	0.6	47
51	CD90 Expression Controls Migration and Predicts Dasatinib Response in Glioblastoma. Clinical Cancer Research, 2017, 23, 7360-7374.	3.2	45
52	Automatic 3D Nonlinear Registration of Mass Spectrometry Imaging and Magnetic Resonance Imaging Data. Analytical Chemistry, 2019, 91, 6206-6216.	3.2	45
53	Brain metastases-derived extracellular vesicles induce binding and aggregation of low-density lipoprotein. Journal of Nanobiotechnology, 2020, 18, 162.	4.2	45
54	Temozolomide Sensitizes MGMT-Deficient Tumor Cells to ATR Inhibitors. Cancer Research, 2019, 79, 4331-4338.	0.4	44

#	Article	IF	CITATIONS
55	Peak learning of mass spectrometry imaging data using artificial neural networks. Nature Communications, 2021, 12, 5544.	5.8	43
56	Extracellular Hyaluronic Acid Influences the Efficacy of EGFR Tyrosine Kinase Inhibitors in a Biomaterial Model of Glioblastoma. Advanced Healthcare Materials, 2017, 6, 1700529.	3.9	41
57	Phase 1/2 trial of temsirolimus and sorafenib in the treatment of patients with recurrent glioblastoma: North Central Cancer Treatment Group Study/Alliance N0572. Cancer, 2018, 124, 1455-1463.	2.0	41
58	MARQUIS: A multiplex method for absolute quantification of peptides and posttranslational modifications. Nature Communications, 2015, 6, 5924.	5.8	39
59	Combination therapy in a xenograft model of glioblastoma: enhancement of the antitumor activity of temozolomide by an MDM2 antagonist. Journal of Neurosurgery, 2017, 126, 446-459.	0.9	39
60	Brain Distribution of a Panel of Epidermal Growth Factor Receptor Inhibitors Using Cassette Dosing in Wild-Type and <i>Abcb1/Abcg2</i> -Deficient Mice. Drug Metabolism and Disposition, 2019, 47, 393-404.	1.7	38
61	Convertible MRI contrast: Sensing the delivery and release of anti-glioma nano-drugs. Scientific Reports, 2015, 5, 9874.	1.6	37
62	Heterogeneous delivery across the blood-brain barrier limits the efficacy of an EGFR-targeting antibody drug conjugate in glioblastoma. Neuro-Oncology, 2021, 23, 2042-2053.	0.6	37
63	Methylation-dependent Tissue Factor Suppression Contributes to the Reduced Malignancy of IDH1-mutant Gliomas. Clinical Cancer Research, 2019, 25, 747-759.	3.2	35
64	Hyaluronic acid-functionalized gelatin hydrogels reveal extracellular matrix signals temper the efficacy of erlotinib against patient-derived glioblastoma specimens. Biomaterials, 2019, 219, 119371.	5.7	34
65	Drug delivery to melanoma brain metastases: Can current challenges lead to new opportunities?. Pharmacological Research, 2017, 123, 10-25.	3.1	31
66	Presence of stromal cells in a bioengineered tumor microenvironment alters glioblastoma migration and response to STAT3 inhibition. PLoS ONE, 2018, 13, e0194183.	1.1	31
67	Addressing BBB Heterogeneity: A New Paradigm for Drug Delivery to Brain Tumors. Pharmaceutics, 2020, 12, 1205.	2.0	31
68	Initial Results of a Phase 2 Trial of 18F-DOPA PET-Guided Dose-Escalated Radiation Therapy for Glioblastoma. International Journal of Radiation Oncology Biology Physics, 2021, 110, 1383-1395.	0.4	31
69	Peptide Carrier-Mediated Non-Covalent Delivery of Unmodified Cisplatin, Methotrexate and Other Agents via Intravenous Route to the Brain. PLoS ONE, 2014, 9, e97655.	1.1	30
70	Anti-GD2-ch14.18/CHO coated nanoparticles mediate glioblastoma (GBM)-specific delivery of the aromatase inhibitor, Letrozole, reducing proliferation, migration and chemoresistance in patient-derived GBM tumor cells. Oncotarget, 2017, 8, 16605-16620.	0.8	30
71	Pharmacokinetic Assessment of Cooperative Efflux of the Multitargeted Kinase Inhibitor Ponatinib Across the Blood-Brain Barrier. Journal of Pharmacology and Experimental Therapeutics, 2018, 365, 249-261.	1.3	30
72	A PDGFRα-driven mouse model of glioblastoma reveals a stathmin1-mediated mechanism of sensitivity to vinblastine. Nature Communications, 2018, 9, 3116.	5.8	30

#	Article	IF	CITATIONS
73	Sulforaphane suppresses the growth of glioblastoma cells, glioblastoma stem cell–like spheroids, and tumor xenografts through multiple cell signaling pathways. Journal of Neurosurgery, 2017, 127, 1219-1230.	0.9	29
74	Inhibiting DNA-PKCS radiosensitizes human osteosarcoma cells. Biochemical and Biophysical Research Communications, 2017, 486, 307-313.	1.0	29
75	Hypoxia-inducible factor 2α: a novel target in gliomas. Future Medicinal Chemistry, 2018, 10, 2227-2236.	1.1	28
76	Investigating Dependencies of Relative Biological Effectiveness for Proton Therapy in Cancer Cells. International Journal of Particle Therapy, 2017, 4, 12-22.	0.9	28
77	Dasatinib in recurrent glioblastoma: failure as a teacher. Neuro-Oncology, 2015, 17, 910-911.	0.6	27
78	Inhibition of phosphatidylinositol 3-kinase by PX-866 suppresses temozolomide-induced autophagy and promotes apoptosis in glioblastoma cells. Molecular Medicine, 2019, 25, 49.	1.9	27
79	Decreased affinity for efflux transporters increases brain penetrance and molecular targeting of a PI3K/mTOR inhibitor in a mouse model of glioblastoma. Neuro-Oncology, 2015, 17, 1210-9.	0.6	26
80	EGFR Signals through a DOCK180-MLK3 Axis to Drive Glioblastoma Cell Invasion. Molecular Cancer Research, 2017, 15, 1085-1095.	1.5	26
81	Macropinocytosis of Bevacizumab by Glioblastoma Cells in the Perivascular Niche Affects their Survival. Clinical Cancer Research, 2017, 23, 7059-7071.	3.2	26
82	Network Modeling Identifies Patient-specific Pathways in Glioblastoma. Scientific Reports, 2016, 6, 28668.	1.6	25
83	Heterogeneous Binding and Central Nervous System Distribution of the Multitargeted Kinase Inhibitor Ponatinib Restrict Orthotopic Efficacy in a Patient-Derived Xenograft Model of Glioblastoma. Journal of Pharmacology and Experimental Therapeutics, 2017, 363, 136-147.	1.3	25
84	Brain Distribution of a Novel MEK Inhibitor E6201: Implications in the Treatment of Melanoma Brain Metastases. Drug Metabolism and Disposition, 2018, 46, 658-666.	1.7	24
85	Characterization of relative biological effectiveness for conventional radiation therapy: a comparison of clinical 6 MV X-rays and 137Cs. Journal of Radiation Research, 2017, 58, 608-613.	0.8	23
86	The influence of the blood–brain barrier in the treatment of brain tumours. Journal of Internal Medicine, 2022, 292, 3-30.	2.7	23
87	Effective Treatment of Established GL261 Murine Gliomas through Picornavirus Vaccination-Enhanced Tumor Antigen-Specific CD8+ T Cell Responses. PLoS ONE, 2015, 10, e0125565.	1.1	22
88	Hirsutinolide Series Inhibit Stat3 Activity, Alter GCN1, MAP1B, Hsp105, G6PD, Vimentin, TrxR1, and Importin α-2 Expression, and Induce Antitumor Effects against Human Glioma. Journal of Medicinal Chemistry, 2015, 58, 7734-7748.	2.9	22
89	Radiation Induced Metabolic Alterations Associate With Tumor Aggressiveness and Poor Outcome in Glioblastoma. Frontiers in Oncology, 2020, 10, 535.	1.3	22
90	Selective Vulnerability of Senescent Glioblastoma Cells to BCL-XL Inhibition. Molecular Cancer Research, 2022, 20, 938-948.	1.5	22

#	Article	IF	Citations
91	Efficacy of EGFR plus TNF inhibition in a preclinical model of temozolomide-resistant glioblastoma. Neuro-Oncology, 2019, 21, 1529-1539.	0.6	21
92	Crosstalk between microglia and patient-derived glioblastoma cells inhibit invasion in a three-dimensional gelatin hydrogel model. Journal of Neuroinflammation, 2020, 17, 346.	3.1	21
93	IGFBP6 controls the expansion of chemoresistant glioblastoma through paracrine IGF2/IGF-1R signaling. Cell Communication and Signaling, 2018, 16, 61.	2.7	20
94	Enhancing Brain Retention of a KIF11 Inhibitor Significantly Improves its Efficacy in a Mouse Model of Glioblastoma. Scientific Reports, 2020, 10, 6524.	1.6	20
95	Identifying Inhibitors of ATM and ATR Kinase Activities. , 2003, 85, 49-56.		19
96	Radiation Therapy Oncology Group 9802: Controversy or Consensus in the Treatment of Newly Diagnosed Low-Grade Glioma?. Seminars in Radiation Oncology, 2015, 25, 197-202.	1.0	19
97	Estrogenâ€related receptor β activation and isoform shifting by cdc2â€like kinase inhibition restricts migration and intracranial tumor growth in glioblastoma. FASEB Journal, 2019, 33, 13476-13491.	0.2	19
98	Attenuating hypoxia driven malignant behavior in glioblastoma with a novel hypoxia-inducible factor 2 alpha inhibitor. Scientific Reports, 2020, 10, 15195.	1.6	19
99	Phage Particles of Controlled Length and Genome for <i>In Vivo</i> Targeted Glioblastoma Imaging and Therapeutic Delivery. ACS Nano, 2022, 16, 11676-11691.	7. 3	19
100	Challenges in the Delivery of Therapies to Melanoma Brain Metastases. Current Pharmacology Reports, 2016, 2, 309-325.	1.5	18
101	Factors Influencing the Central Nervous System Distribution of a Novel Phosphoinositide 3-Kinase/Mammalian Target of Rapamycin Inhibitor GSK2126458: Implications for Overcoming Resistance with Combination Therapy for Melanoma Brain Metastases. Journal of Pharmacology and Experimental Therapeutics, 2016, 356, 251-259.	1.3	18
102	Myosin-1E interacts with FAK proline-rich region 1 to induce fibronectin-type matrix. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3933-3938.	3.3	18
103	SGEF Is Regulated via TWEAK/Fn14/NF-κB Signaling and Promotes Survival by Modulation of the DNA Repair Response to Temozolomide. Molecular Cancer Research, 2016, 14, 302-312.	1.5	17
104	Xenograft-based, platform-independent gene signatures to predict response to alkylating chemotherapy, radiation, and combination therapy for glioblastoma. Neuro-Oncology, 2019, 21, 1141-1149.	0.6	17
105	Expression of the Androgen Receptor Governs Radiation Resistance in a Subset of Glioblastomas Vulnerable to Antiandrogen Therapy. Molecular Cancer Therapeutics, 2020, 19, 2163-2174.	1.9	17
106	Semaphorin 3A mediated brain tumor stem cell proliferation and invasion in EGFRviii mutant gliomas. BMC Cancer, 2020, 20, 1213.	1.1	17
107	Inhibition of ATM Induces Hypersensitivity to Proton Irradiation by Upregulating Toxic End Joining. Cancer Research, 2021, 81, 3333-3346.	0.4	16
108	Quantitative Analysis of Tyrosine Phosphorylation from FFPE Tissues Reveals Patient-Specific Signaling Networks. Cancer Research, 2021, 81, 3930-3941.	0.4	16

#	Article	IF	CITATIONS
109	Fluorescent reporter assays provide direct, accurate, quantitative measurements of MGMT status in human cells. PLoS ONE, 2019, 14, e0208341.	1.1	15
110	Brain Distribution and Active Efflux of Three panRAF Inhibitors: Considerations in the Treatment of Melanoma Brain Metastases. Journal of Pharmacology and Experimental Therapeutics, 2019, 368, 446-461.	1.3	15
111	Quantitative Phosphoproteomics Reveals Wee1 Kinase as a Therapeutic Target in a Model of Proneural Glioblastoma. Molecular Cancer Therapeutics, 2016, 15, 1332-1343.	1.9	14
112	Macropinocytosis requires Gal-3 in a subset of patient-derived glioblastoma stem cells. Communications Biology, 2021, 4, 718.	2.0	14
113	The novel BET inhibitor UM-002 reduces glioblastoma cell proliferation and invasion. Scientific Reports, 2021, 11, 23370.	1.6	14
114	Brain Distributional Kinetics of a Novel MDM2 Inhibitor SAR405838: Implications for Use in Brain Tumor Therapy. Drug Metabolism and Disposition, 2019, 47, 1403-1414.	1.7	13
115	massNet: integrated processing and classification of spatially resolved mass spectrometry data using deep learning for rapid tumor delineation. Bioinformatics, 2022, 38, 2015-2021.	1.8	13
116	Patient-derived xenografts of central nervous system metastasis reveal expansion of aggressive minor clones. Neuro-Oncology, 2020, 22, 70-83.	0.6	12
117	<i>In Vivo</i> Efficacy of Tesevatinib in <i>EGFR</i> -Amplified Patient-Derived Xenograft Glioblastoma Models May Be Limited by Tissue Binding and Compensatory Signaling. Molecular Cancer Therapeutics, 2021, 20, 1009-1018.	1.9	11
118	Image-based metric of invasiveness predicts response to adjuvant temozolomide for primary glioblastoma. PLoS ONE, 2020, 15, e0230492.	1.1	10
119	Orthogonal targeting of EGFRvIII expressing glioblastomas through simultaneous EGFR and PLK1 inhibition. Oncotarget, 2015, 6, 11751-11767.	0.8	9
120	Editorial: Targeted Therapies for Glioblastoma: A Critical Appraisal. Frontiers in Oncology, 2019, 9, 1216.	1.3	9
121	Quantifying the setup uncertainty of a stereotactic murine micro-image guided radiation therapy system. British Journal of Radiology, 2019, 92, 20180487.	1.0	9
122	EGFRvIII tumorigenicity requires PDGFRA co-signaling and reveals therapeutic vulnerabilities in glioblastoma. Oncogene, 2021, 40, 2682-2696.	2.6	9
123	Efflux Limits Tumor Drug Delivery Despite Disrupted BBB. Trends in Pharmacological Sciences, 2021, 42, 426-428.	4.0	9
124	Quantifying Glioblastoma Drug Response Dynamics Incorporating Treatment Sensitivity and Blood Brain Barrier Penetrance From Experimental Data. Frontiers in Physiology, 2020, 11, 830.	1.3	8
125	Nanocell-mediated delivery of miR-34a counteracts temozolomide resistance in glioblastoma. Molecular Medicine, 2021, 27, 28.	1.9	8
126	Preclinical modeling in glioblastoma patient-derived xenograft (GBM PDX) xenografts to guide clinical development of lisavanbulin—a novel tumor checkpoint controller targeting microtubules. Neuro-Oncology, 2022, 24, 384-395.	0.6	7

#	Article	IF	CITATIONS
127	Preclinical Risk Evaluation of Normal Tissue Injury With Novel Radiosensitizers. International Journal of Radiation Oncology Biology Physics, 2021, 111, e54-e62.	0.4	7
128	Brain Distribution of Berzosertib: An Ataxia Telangiectasia and Rad3-Related Protein Inhibitor for the Treatment of Glioblastoma. Journal of Pharmacology and Experimental Therapeutics, 2021, 379, 343-357.	1.3	7
129	Central Nervous System Delivery of the Catalytic Subunit of DNA-Dependent Protein Kinase Inhibitor Peposertib as Radiosensitizer for Brain Metastases. Journal of Pharmacology and Experimental Therapeutics, 2022, 381, 217-228.	1.3	7
130	Protein kinase $C\hat{l}^1$ and SRC signaling define reciprocally related subgroups of glioblastoma with distinct therapeutic vulnerabilities. Cell Reports, 2021, 37, 110054.	2.9	6
131	RBBP4-p300 axis modulates expression of genes essential for cell survival and is a potential target for therapy in glioblastoma. Neuro-Oncology, 2022, 24, 1261-1272.	0.6	6
132	Factors Influencing Luciferase-Based Bioluminescent Imaging in Preclinical Models of Brain Tumor. Drug Metabolism and Disposition, 2022, 50, 277-286.	1.7	6
133	Overcoming differential tumor penetration of BRAF inhibitors using computationally guided combination therapy. Science Advances, 2022, 8, eabl6339.	4.7	6
134	Detection of temozolomide-induced hypermutation and response to PD-1 checkpoint inhibitor in recurrent glioblastoma. Neuro-Oncology Advances, 2022, 4, .	0.4	6
135	Molecular and Structural Traits of Insulin Receptor Substrate 1/LC3 Nuclear Structures and Their Role in Autophagy Control and Tumor Cell Survival. Molecular and Cellular Biology, 2018, 38, .	1.1	5
136	Real-Time Methylation-Specific Polymerase Chain Reaction for MGMT Promoter Methylation Clinical Testing in Glioblastoma. American Journal of Clinical Pathology, 2017, 148, 296-307.	0.4	5
137	Moving Beyond the Standard of Care: Accelerate Testing of Radiation-Drug Combinations. International Journal of Radiation Oncology Biology Physics, 2021, 111, 1131-1139.	0.4	5
138	Overview of cancer molecular radiobiology. Cancer Treatment and Research, 2008, 139, 117-33.	0.2	5
139	DDIS-01. THE ANTIBODY-DRUG CONJUGATE ABT-414 DEMONSTRATES SINGLE-AGENT ANTI-CANCER ACTIVITY ACROSS A PANEL OF GBM PATIENT-DERIVED XENOGRAFTS. Neuro-Oncology, 2018, 20, vi69-vi69.	0.6	4
140	Imaging and Dosimetry Study of Inter-fraction Setup Error in a Murine Xenograft Flank Tumor Radiation Model. Radiation Research, 2019, 193, 161.	0.7	4
141	Targeting the RhoGEF Î ² PIX/COOL-1 in Glioblastoma: Proof of Concept Studies. Cancers, 2020, 12, 3531.	1.7	4
142	TOP2B Enzymatic Activity on Promoters and Introns Modulates Multiple Oncogenes in Human Gliomas. Clinical Cancer Research, 2021, 27, 5669-5680.	3.2	4
143	Multimodal platform for assessing drug distribution and response in clinical trials. Neuro-Oncology, 2022, 24, 64-77.	0.6	4
144	IL-13Rα2 Status Predicts GB-13 (IL13.E13K-PE4E) Efficacy in High-Grade Glioma. Pharmaceutics, 2022, 14, 922.	2.0	4

#	Article	IF	Citations
145	Design and characterization of an economical < sup > 192 < sup > Ir hemi-brain small animal irradiator. International Journal of Radiation Biology, 2014, 90, 936-942.	1.0	3
146	ENvironmental Dynamics Underlying Responsive Extreme Survivors (ENDURES) of Glioblastoma. American Journal of Clinical Oncology: Cancer Clinical Trials, 2019, 42, 655-661.	0.6	3
147	Matrix Hyaluronic Acid and Hypoxia Influence a CD133 ⁺ Subset of Patient-Derived Glioblastoma Cells. Tissue Engineering - Part A, 2022, 28, 330-340.	1.6	3
148	Methods for intratumoral microdialysis probe targeting and validation in murine brain tumor models. Journal of Neuroscience Methods, 2021, 363, 109321.	1.3	3
149	PM-19 * DEVELOPMENT OF A PANEL OF PATIENT-DERIVED XENOGRAFT (PDX) MODELS FROM BRAIN METASTASES. Neuro-Oncology, 2014, 16, v173-v173.	0.6	2
150	ACTR-12. PRELIMINARY SAFETY AND EFFICACY OF A PHASE II TRIAL OF 18F-DOPA PET-GUIDED, DOSE-ESCALATED RADIOTHERAPY IN THE TREATMENT OF GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi13-vi13.	0.6	2
151	Changes in the vasculature of human brain tumors: Implications for treatment. Neuro-Oncology, 2021, 23, 1995-1997.	0.6	2
152	Characterization of Transgenic NSG-SGM3 Mouse Model of Precision Radiation-Induced Chronic Hyposalivation. Radiation Research, 2022, 198, .	0.7	2
153	RTHP-02. IMPACT OF 18F-DOPA PET ON RADIOTHERAPY TARGET VOLUMES FOR NEWLY DIAGNOSED MGMT UNMETHYLATED GLIOBLASTOMA PATIENTS; PRELIMINARY RESULTS OF A PHASE II DOSE-ESCALATION TRIAL. Neuro-Oncology, 2018, 20, vi225-vi225.	0.6	1
154	TMOD-07. LOCALIZATION OF ERLOTONIB RELATIVE TO MRI-BASED TUMOR EXTENT IN PDX GLIOBLASTOMA MODEL: TOWARDS A MATHEMATICAL MODEL FOR THE INTERFACE BETWEEN MRI AND DRUG DISTRIBUTION. Neuro-Oncology, 2018, 20, vi269-vi270.	0.6	1
155	Pathogenic Germ Line Variants in a Patient With Severe Toxicity From Breast Radiotherapy. Clinical Breast Cancer, 2019, 19, e400-e405.	1.1	1
156	Experimental Design of Preclinical Experiments: Number of PDX Lines versus Subsampling within PDX Lines. Neuro-Oncology, 2021, 23, 2066-2075.	0.6	1
157	Lung stereotactic body radiotherapy using a coplanar versus a non-coplanar beam technique: a comparison of clinical outcomes. Journal of Radiosurgery and SBRT, 2013, 2, 225-233.	0.2	1
158	ATPS-61NEW SMALL MOLECULES THAT KILL HYPOXICALLY TRANSFORMED GLIOMA STEM-LIKE CELLS. Neuro-Oncology, 2015, 17, v31.4-v31.	0.6	0
159	RDNA-04. POTENTIAL MECHANISM OF TEMOZOLOMIDE-MEDIATED RADIO-SENSITIZATION IN MGMT HYPERMETHYLATED GLIOBLASTOMA CELLS. Neuro-Oncology, 2018, 20, vi222-vi222.	0.6	0
160	TMOD-11. IMAGING BASED INVASION METRIC PREDICTIVE OF RESPONSE TO ABT414 IN ORTHOTOPIC EGFRviii AMPLIFIED PATIENT DERIVED XENOGRAFTS. Neuro-Oncology, 2018, 20, vi270-vi271.	0.6	0
161	RDNA-06. A NOVEL ROLE OF SGEF IN MEDIATING GBM CELL SURVIVAL BY MODULATING THE DNA DAMAGE REPAIR MECHANISM. Neuro-Oncology, 2018, 20, vi222-vi223.	0.6	0
162	GENE-20. A NOVEL K-M ENHANCER REGULATES TEMOZOLOMIDE RESISTANCE AND TUMOR GROWTH IN GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi107-vi107.	0.6	0

#	Article	IF	CITATIONS
163	TMIC-36. LOCAL TISSUE BIOMARKERS OF RESPONSE TO THERAPY FOR GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi264-vi264.	0.6	O
164	DDIS-25. TARGETING GLIOBLASTOMA HETEROGENEITY WITH miR-34a. Neuro-Oncology, 2018, 20, vi74-vi74.	0.6	0
165	TMOD-18. THE PATIENT DERIVED XENOGRAFT NATIONAL RESOURCE: A COMPREHENSIVE COLLECTION OF HIGH-GRADE GLIOMA MODELS FOR PRE-CLINICAL AND TRANSLATIONAL STUDIES. Neuro-Oncology, 2018, 20, vi272-vi272.	0.6	O
166	CADD-57. THE EFFICACY OF THERAPY WITH ABT-414, AN EGFR-TARGETING ADC, IS POTENTIALLY ALTERED BY HETEROZYGOUS DELETION OF THE ENDOCYTIC TRAFFICKING REGULATOR RBSN. Neuro-Oncology, 2018, 20, vi283-vi284.	0.6	0
167	DRES-17. ACTIVATION OF FGF SIGNALING PATHWAY CONFERS RESISTANCE TO EGFR INHIBITION IN GBM. Neuro-Oncology, 2018, 20, vi79-vi79.	0.6	0
168	Comments on: "Synergistic activity of mTORC1/2 kinase and MEK inhibitors suppresses pediatric low-grade glioma tumorigenicity and vascularity― Neuro-Oncology, 2020, 22, 1404-1405.	0.6	0
169	Title is missing!. , 2020, 15, e0230492.		0
170	Title is missing!. , 2020, 15, e0230492.		0
171	Title is missing!. , 2020, 15, e0230492.		0
172	Title is missing!. , 2020, 15, e0230492.		0