Steven R Ellis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1191864/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Early Onset Colorectal Cancer: An Emerging Cancer Risk in Patients with Diamond Blackfan Anemia. Genes, 2022, 13, 56.	2.4	11
2	Pathogenic germline <i>IKZF1</i> variant alters hematopoietic gene expression profiles. Journal of Physical Education and Sports Management, 2021, 7, a006015.	1.2	5
3	Rare ribosomopathies: insights into mechanisms of cancer. Nature Reviews Cancer, 2019, 19, 228-238.	28.4	83
4	Ribosome Levels Selectively Regulate Translation and Lineage Commitment in Human Hematopoiesis. Cell, 2018, 173, 90-103.e19.	28.9	296
5	Proapoptotic Requirement of Ribosomal Protein L11 in Ribosomal Stress-Challenged Cortical Neurons. Molecular Neurobiology, 2018, 55, 538-553.	4.0	10
6	Ribosomopathies Through a Diamond Lens. Pediatric Oncology, 2018, , 99-110.	0.5	2
7	A functional assay for the clinical annotation of genetic variants of uncertain significance in Diamond-Blackfan anemia. Human Mutation, 2018, 39, 1102-1111.	2.5	9
8	Increased Prevalence of Congenital Heart Disease in Children With Diamond Blackfan Anemia Suggests Unrecognized Diamond Blackfan Anemia as a Cause of Congenital Heart Disease in the General Population. Circulation Genomic and Precision Medicine, 2018, 11, e002044.	3.6	32
9	Deletion of ribosomal protein genes is a common vulnerability in human cancer, especially in concert with <i> <scp>TP</scp> 53 </i> mutations. EMBO Molecular Medicine, 2017, 9, 498-507.	6.9	86
10	Novel and known ribosomal causes of Diamond-Blackfan anaemia identified through comprehensive genomic characterisation. Journal of Medical Genetics, 2017, 54, 417-425.	3.2	71
11	Molecular convergence in ex vivo models of Diamond-Blackfan anemia. Blood, 2017, 129, 3111-3120.	1.4	30
12	Lymphoblastoid cell lines from Diamond Blackfan anaemia patients exhibit a full ribosomal stress phenotype that is rescued by gene therapy. Scientific Reports, 2017, 7, 12010.	3.3	19
13	Bmi1 Promotes Erythroid Development Through Regulating Ribosome Biogenesis. Stem Cells, 2015, 33, 925-938.	3.2	27
14	Exploiting preâ€rRNA processing in <scp>D</scp> iamond <scp>B</scp> lackfan anemia gene discovery and diagnosis. American Journal of Hematology, 2014, 89, 985-991.	4.1	53
15	Loss of GATAâ€1 full length as a cause of Diamond–Blackfan anemia phenotype. Pediatric Blood and Cancer, 2014, 61, 1319-1321.	1.5	74
16	Dissecting the transcriptional phenotype of ribosomal protein deficiency: implications for Diamond-Blackfan Anemia. Gene, 2014, 545, 282-289.	2.2	44
17	A new system for naming ribosomal proteins. Current Opinion in Structural Biology, 2014, 24, 165-169.	5.7	481
18	Nucleolar stress in Diamond Blackfan anemia pathophysiology. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 765-768.	3.8	55

STEVEN R ELLIS

#	Article	IF	CITATIONS
19	Whole-exome sequencing and functional studies identify RPS29 as a novel gene mutated in multicase Diamond-Blackfan anemia families. Blood, 2014, 124, 24-32.	1.4	79
20	p53-Independent Cell Cycle and Erythroid Differentiation Defects in Murine Embryonic Stem Cells Haploinsufficient for Diamond Blackfan Anemia-Proteins: RPS19 versus RPL5. PLoS ONE, 2014, 9, e89098.	2.5	33
21	Ribosomal Protein SA Haploinsufficiency in Humans with Isolated Congenital Asplenia. Science, 2013, 340, 976-978.	12.6	176
22	Diamond Blackfan Anemia: Ribosomal Proteins Going Rogue. Seminars in Hematology, 2011, 48, 89-96.	3.4	62
23	Mice with ribosomal protein S19 deficiency develop bone marrow failure and symptoms like patients with Diamond-Blackfan anemia. Blood, 2011, 118, 6087-6096.	1.4	121
24	Ribosomal protein gene deletions in Diamond-Blackfan anemia. Blood, 2011, 118, 6943-6951.	1.4	121
25	Mitochondrial Dysfunction As a Potential Source of Reactive Oxygen Species in Cellular Models of Shwachman-Diamond Syndrome. Blood, 2011, 118, 1343-1343.	1.4	Ο
26	The ribosomal basis of diamond-blackfan anemia: mutation and database update. Human Mutation, 2010, 31, 1269-1279.	2.5	202
27	Distinct ribosome maturation defects in yeast models of Diamond-Blackfan anemia and Shwachman-Diamond syndrome. Haematologica, 2010, 95, 57-64.	3.5	35
28	SNP Array Genotyping Reveals Constitutional and Mosaic Losses of Ribosomal Protein Gene Regions In Patients with Diamond Blackfan Anemia without Ribosomal Protein Gene Mutations Blood, 2010, 116, 1168-1168.	1.4	3
29	5q- Myelodysplastic Syndrome, In One of 23 Children Lacking a Known Ribosomal Gene Mutation, Masquerading as Diamond Blackfan Anemia (DBA) and Responding to Lenalidomide. Blood, 2010, 116, LBA-2-LBA-2.	1.4	2
30	Diamond Blackfan Anemia Defects In Rps19-Mutant Embryonic Stem Cells: Rescue by Gene Replacement but Not Glucocorticoid Treatment. Blood, 2010, 116, 2237-2237.	1.4	3
31	5q- Syndrome In a Child: Is This Acquired Diamond Blackfan Anemia (DBA)?. Blood, 2010, 116, 4430-4430.	1.4	4
32	Diamond-Blackfan Anemia: Diagnosis, Treatment, and Molecular Pathogenesis. Hematology/Oncology Clinics of North America, 2009, 23, 261-282.	2.2	174
33	Specific Hematopoietic and Erythroid Differentiation Defects in Mouse Embryonic Stem (ES) Cells with Abortive Ribosome Assembly Blood, 2009, 114, 1088-1088.	1.4	Ο
34	Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature, 2008, 451, 335-339.	27.8	850
35	Chapter 8 Diamond Blackfan Anemia: A Disorder of Red Blood Cell Development. Current Topics in Developmental Biology, 2008, 82, 217-241.	2.2	58
36	Abnormalities of the large ribosomal subunit protein, Rpl35a, in Diamond-Blackfan anemia. Blood, 2008, 112, 1582-1592.	1.4	208

STEVEN R ELLIS

#	Article	IF	CITATIONS
37	Depletion of the Shwachman-Diamond Syndrome Protein in Hematopoietic Progenitor Cells Impairs Growth, Colony Formation, and Ribosome Function Blood, 2008, 112, 2046-2046.	1.4	6
38	Combined Disruptions of the Ribosomal Protein s19 and Pim1 Kinase Genes Are Associated with Increased Myeloid/Erythroid Cellularity and Reduced Apoptosis. Blood, 2008, 112, 3097-3097.	1.4	0
39	Depletion of the Shwachman-Diamond Syndrome Gene Product, SBDS, Leads to Growth Inhibition and Increased Expression of OPG and VEGFA Blood, 2008, 112, 2045-2045.	1.4	0
40	Embryoid Body Defect in Mouse Rps19-Haploinsufficient Embryonic Stem Cell Model of Diamond Blackfan Anemia. Blood, 2008, 112, 3093-3093.	1.4	0
41	Human RPS19, the gene mutated in Diamond-Blackfan anemia, encodes a ribosomal protein required for the maturation of 40S ribosomal subunits. Blood, 2007, 109, 980-986.	1.4	174
42	Identification of RPS14 as the 5q-Syndrome Gene by RNA Interference Screen Blood, 2007, 110, 1-1.	1.4	16
43	Diamond Blackfan anemia: A paradigm for a ribosome-based disease. Medical Hypotheses, 2006, 66, 643-648.	1.5	36
44	Ribosomes and marrow failure: coincidental association or molecular paradigm?. Blood, 2006, 107, 4583-4588.	1.4	130
45	Creation of a laminin receptor I/ribosomal protein Sa deficient mouse. FASEB Journal, 2006, 20, A499.	0.5	0
46	Defective Ribosomal RNA Maturation in Patients with Diamond Blackfan Anemia Blood, 2006, 108, 4172-4172.	1.4	0
47	Translation Initiation Defect and Gene Profiles Linked to Depletion of Shwachman-Diamond Syndrome Gene Product Blood, 2005, 106, 3072-3072.	1.4	1
48	Creation of a Ribosomal Protein Sa/LAMR1 Heterozygous Mouse Blood, 2005, 106, 3551-3551.	1.4	0
49	Ribosomal proteins Rps0 and Rps21 of Saccharomyces cerevisiae have overlapping functions in the maturation of the 3' end of 18S rRNA. Nucleic Acids Research, 2003, 31, 6798-6805.	14.5	35
50	Rpm2p: separate domains promote tRNA and Rpm1r maturation in Saccharomyces cerevisiae mitochondria. Nucleic Acids Research, 2001, 29, 3631-3637.	14.5	13
51	Genes Encoding Ribosomal Proteins Rps0A/B of Saccharomyces cerevisiae Interact With TOM1 Mutants Defective in Ribosome Synthesis. Genetics, 2001, 157, 1107-1116.	2.9	13
52	Rpm2, the Protein Subunit of Mitochondrial RNase P in Saccharomyces cerevisiae, Also Has a Role in the Translation of Mitochondrially Encoded Subunits of Cytochrome c Oxidase. Genetics, 2001, 158, 573-585.	2.9	21
53	Proteasome Mutants, pre4-2 and ump1-2, Suppress the Essential Function but Not the Mitochondrial RNase P Function of the Saccharomyces cerevisiae Gene RPM2. Genetics, 2000, 154, 1013-1023.	2.9	11
54	Yeast Proteins Related to the p40/Laminin Receptor Precursor Are Essential Components of the 40 S Ribosomal Subunit. Journal of Biological Chemistry, 1996, 271, 11383-11391.	3.4	57

#	Article	IF	CITATIONS
55	Incorporation of the yeast mitochondrial ribosomal protein Mrp2 into ribosomal subunits requires the mitochondrially encoded Var1 protein. Molecular Genetics and Genomics, 1995, 247, 379-386.	2.4	8