David M Hillis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11911182/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Empirical Test of Bootstrapping as a Method for Assessing Confidence in Phylogenetic Analysis. Systematic Biology, 1993, 42, 182.	5.6	2,316
2	Ribosomal DNA: Molecular Evolution and Phylogenetic Inference. Quarterly Review of Biology, 1991, 66, 411-453.	0.1	2,150
3	Increased Taxon Sampling Greatly Reduces Phylogenetic Error. Systematic Biology, 2002, 51, 588-598.	5.6	834
4	Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. Molecular Phylogenetics and Evolution, 2002, 25, 361-371.	2.7	626
5	Inferring complex phytogenies. Nature, 1996, 383, 130-131.	27.8	509
6	Taxonomic Sampling, Phylogenetic Accuracy, and Investigator Bias. Systematic Biology, 1998, 47, 3-8.	5.6	482
7	Increased Taxon Sampling Is Advantageous for Phylogenetic Inference. Systematic Biology, 2002, 51, 664-671.	5.6	394
8	Is Sparse Taxon Sampling a Problem for Phylogenetic Inference?. Systematic Biology, 2003, 52, 124-126.	5.6	329
9	Molecular Systematics. Copeia, 1996, 1996, 1058.	1.3	294
10	Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous–Paleogene boundary. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5864-E5870.	7.1	261
11	Resolution of Phylogenetic Conflict in Large Data Sets by Increased Taxon Sampling. Systematic Biology, 2006, 55, 522-529.	5.6	253
12	Bayesian Analysis Using a Simple Likelihood Model Outperforms Parsimony for Estimation of Phylogeny from Discrete Morphological Data. PLoS ONE, 2014, 9, e109210.	2.5	224
13	Approaches for Assessing Phylogenetic Accuracy. Systematic Biology, 1995, 44, 3-16.	5.6	218
14	EVOLUTION OF RIBOSOMAL DNA: FIFTY MILLION YEARS OF RECORDED HISTORY IN THE FROG GENUS <i>RANA</i> . Evolution; International Journal of Organic Evolution, 1986, 40, 1275-1288.	2.3	210
15	Molecular evidence of HIV-1 transmission in a criminal case. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14292-14297.	7.1	194
16	Phylogeny and Biogeography of a Cosmopolitan Frog Radiation: Late Cretaceous Diversification Resulted in Continent-Scale Endemism in the Family Ranidae. Systematic Biology, 2006, 55, 579-594.	5.6	190
17	Analysis and Visualization of Tree Space. Systematic Biology, 2005, 54, 471-482.	5.6	183
18	Phylogeny of the New World true frogs (Rana). Molecular Phylogenetics and Evolution, 2005, 34, 299-314.	2.7	170

#	Article	IF	CITATIONS
19	Hobgoblin of phylogenetics?. Nature, 1994, 369, 363-364.	27.8	168
20	Efficient Sequencing of Anuran mtDNAs and a Mitogenomic Exploration of the Phylogeny and Evolution of Frogs. Molecular Biology and Evolution, 2013, 30, 1899-1915.	8.9	167
21	Whole-genome sequence of the Tibetan frog <i>Nanorana parkeri</i> and the comparative evolution of tetrapod genomes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1257-62.	7.1	159
22	Evolutionary changes of heterogametic sex in the phylogenetic history of amphibians. Journal of Evolutionary Biology, 1990, 3, 49-64.	1.7	152
23	Taxon Sampling Affects Inferences of Macroevolutionary Processes from Phylogenetic Trees. Systematic Biology, 2008, 57, 160-166.	5.6	150
24	Sodium channel genes and the evolution of diversity in communication signals of electric fishes: Convergent molecular evolution. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3675-3680.	7.1	149
25	When Are Phylogenetic Analyses Misled by Convergence? A Case Study in Texas Cave Salamanders. Systematic Biology, 2003, 52, 501-514.	5.6	147
26	A Likelihood-Ratio Test of Monophyly. Systematic Biology, 1996, 45, 546-558.	5.6	137
27	Species Names in Phylogenetic Nomenclature. Systematic Biology, 1999, 48, 790-807.	5.6	130
28	Evolution of sodium channels predates the origin of nervous systems in animals. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9154-9159.	7.1	130
29	New World cattle show ancestry from multiple independent domestication events. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1398-406.	7.1	126
30	Spatiotemporal Diversification of the True Frogs (Genus <i>Rana</i>): A Historical Framework for a Widely Studied Group of Model Organisms. Systematic Biology, 2016, 65, 824-842.	5.6	125
31	Toxin-Resistant Sodium Channels: Parallel Adaptive Evolution across a Complete Gene Family. Molecular Biology and Evolution, 2008, 25, 1016-1024.	8.9	123
32	Comparative genomic investigation of high-elevation adaptation in ectothermic snakes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8406-8411.	7.1	119
33	Phylogeny of Frogs of the Physalaemus Pustulosus Species Group, With an Examination of Data Incongruence. Systematic Biology, 1998, 47, 311-335.	5.6	113
34	Success of Phylogenetic Methods in the Four-Taxon Case. Systematic Biology, 1993, 42, 247.	5.6	111
35	Diversification of rhacophorid frogs provides evidence for accelerated faunal exchange between India and Eurasia during the Oligocene. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3441-3446.	7.1	106
36	Species Delimitation in Herpetology. Journal of Herpetology, 2019, 53, 3.	0.5	102

#	Article	IF	CITATIONS
37	THE HISTORY OF A NEARCTIC COLONIZATION: MOLECULAR PHYLOGENETICS AND BIOGEOGRAPHY OF THE NEARCTIC TOADS (BUFO). Evolution; International Journal of Organic Evolution, 2004, 58, 2517-2535.	2.3	101
38	The Multispecies Coalescent Over-Splits Species in the Case of Geographically Widespread Taxa. Systematic Biology, 2020, 69, 184-193.	5.6	99
39	Modeling Character Change Heterogeneity in Phylogenetic Analyses of Morphology through the Use of Priors. Systematic Biology, 2016, 65, 602-611.	5.6	97
40	Polyploids with Different Origins and Ancestors Form a Single Sexual Polyploid Species. American Naturalist, 2006, 167, E88-E101.	2.1	93
41	Phylogeny of North American fireflies (Coleoptera: Lampyridae): Implications for the evolution of light signals. Molecular Phylogenetics and Evolution, 2007, 45, 33-49.	2.7	93
42	Taxonomic Freedom and the Role of Official Lists of Species Names. Herpetologica, 2009, 65, 115-128.	0.4	88
43	Source identification in two criminal cases using phylogenetic analysis of HIV-1 DNA sequences. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21242-21247.	7.1	80
44	Genetic Algorithms and Parallel Processing in Maximum-Likelihood Phylogeny Inference. Molecular Biology and Evolution, 2002, 19, 1717-1726.	8.9	79
45	Deletion of the elFiso4G subunit of the Arabidopsis elFiso4F translation initiation complex impairs health and viability. Plant Molecular Biology, 2010, 74, 249-263.	3.9	78
46	Ribosomal DNA: Intraspecific Polymorphism, Concerted Evolution, and Phylogeny Reconstruction. Systematic Zoology, 1988, 37, 63.	1.6	77
47	Phylogenetic Relationships and Systematic Revision of Central Texas Hemidactyliine Plethodontid Salamanders. Herpetological Monographs, 2000, 14, 1.	0.8	75
48	Species delimitation in endangered groundwater salamanders: Implications for aquifer management and biodiversity conservation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2624-2633.	7.1	74
49	Constraints in naming parts of the Tree of Life. Molecular Phylogenetics and Evolution, 2007, 42, 331-338.	2.7	73
50	ALL-MALE ASEXUALITY: ORIGIN AND MAINTENANCE OF ANDROGENESIS IN THE ASIAN CLAM CORBICULA. Evolution; International Journal of Organic Evolution, 2008, 62, 1119-1136.	2.3	70
51	Evolution of Ribosomal DNA: Fifty Million Years of Recorded History in the Frog Genus rana. Evolution; International Journal of Organic Evolution, 1986, 40, 1275.	2.3	68
52	Convergence of ion channel genome content in early animal evolution. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E846-51.	7.1	66
53	Support for dental HIV transmission. Nature, 1994, 369, 24-25.	27.8	63
54	Rhodopsin evolution in the dark. Nature, 1997, 387, 667-668.	27.8	63

#	Article	IF	CITATIONS
55	Targeted Enrichment: Maximizing Orthologous Gene Comparisons across Deep Evolutionary Time. PLoS ONE, 2013, 8, e67908.	2.5	62
56	Which came first: The lizard or the egg? Robustness in phylogenetic reconstruction of ancestral states. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2015, 324, 504-516.	1.3	57
57	Species groups distributed across elevational gradients reveal convergent and continuous genetic adaptation to high elevations. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10634-E10641.	7.1	57
58	Phylogeny and Biogeography of the Rana pipiens Complex: A Biochemical Evaluation. Systematic Zoology, 1983, 32, 132.	1.6	56
59	Phylogeny Unites Animal Sodium Leak Channels with Fungal Calcium Channels in an Ancient, Voltage-Insensitive Clade. Molecular Biology and Evolution, 2012, 29, 3613-3616.	8.9	53
60	Morphological and Electrophoretic Evidence for Two Species of Corbicula (Bivalvia: Corbiculidae) in North America. American Midland Naturalist, 1982, 108, 74.	0.4	52
61	Complex Homology and the Evolution of Nervous Systems. Trends in Ecology and Evolution, 2016, 31, 127-135.	8.7	52
62	Molecular evolution of southern North American Cyprinidae (Actinopterygii), with the description of the new genus Tampichthys from central Mexico. Molecular Phylogenetics and Evolution, 2008, 47, 729-756.	2.7	51
63	Divergent gene copies in the asexual class Bdelloidea (Rotifera) separated before the bdelloid radiation or within bdelloid families. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1622-1625.	7.1	50
64	How do SNP ascertainment schemes and population demographics affect inferences about population history?. BMC Genomics, 2015, 16, 266.	2.8	49
65	The Anolis Dewlap: Interspecific Variability and Morphological Associations with Habitat. Copeia, 1984, 1984, 315.	1.3	48
66	Herpetological phylogeographic analyses support a Miocene focal point of Himalayan uplift and biological diversification. National Science Review, 2021, 8, nwaa263.	9.5	46
67	Base Compositional Bias and Phylogenetic Analyses: A Test of the "Flying DNA―Hypothesis. Molecular Phylogenetics and Evolution, 1998, 10, 408-416.	2.7	44
68	Asymmetric biotic interchange across the Bering land bridge between Eurasia and North America. National Science Review, 2019, 6, 739-745.	9.5	43
69	Genomic and transcriptomic investigations of the evolutionary transition from oviparity to viviparity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3646-3655.	7.1	43
70	THE IMPORTANCE OF THE ONTOGENETIC NICHE IN RESOURCE-ASSOCIATED DIVERGENCE: EVIDENCE FROM A GENERALIST GRASSHOPPER. Evolution; International Journal of Organic Evolution, 2002, 56, 731-740.	2.3	40
71	Molecular evolution of communication signals in electric fish. Journal of Experimental Biology, 2008, 211, 1814-1818.	1.7	40

HOMOLOGY IN MOLECULAR BIOLOGY., 1994, , 339-368.

#	Article	IF	CITATIONS
73	MAKING EVOLUTION RELEVANT AND EXCITING TO BIOLOGY STUDENTS. Evolution; International Journal of Organic Evolution, 2007, 61, 1261-1264.	2.3	38
74	Evolution of Animal Neural Systems. Annual Review of Ecology, Evolution, and Systematics, 2017, 48, 377-398.	8.3	36
75	Phylogeny and Taxonomy of the Rana palmipes Group (Salientia: Ranidae). Herpetological Monographs, 1988, 2, 1.	0.8	35
76	The Potential Role of Androgenesis in Cytoplasmic–Nuclear Phylogenetic Discordance. Systematic Biology, 2011, 60, 87-96.	5.6	34
77	Independent acquisition of sodium selectivity in bacterial and animal sodium channels. Current Biology, 2013, 23, R948-R949.	3.9	32
78	Rare gene capture in predominantly androgenetic species. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9520-9524.	7.1	31
79	A Mitochondrial Genome of Rhyparochromidae (Hemiptera: Heteroptera) and a Comparative Analysis of Related Mitochondrial Genomes. Scientific Reports, 2016, 6, 35175.	3.3	31
80	Phylogeny, diversity, and species delimitation of the North American Round-Nosed Minnows (Teleostei:) Tj ETQ Evolution, 2012, 62, 427-446.	0 0 0 rgB1 2.7	[/Overlock 10 29
81	Recent host-shifts in ranaviruses: signatures of positive selection in the viral genome. Journal of General Virology, 2013, 94, 2082-2093.	2.9	29
82	Premating Isolating Mechanisms among Three Species of the Rana pipiens Complex in Texas and Southern Oklahoma. Copeia, 1981, 1981, 312.	1.3	27
83	Long-branch attraction and the phylogeny of true water bugs (Hemiptera: Nepomorpha) as estimated from mitochondrial genomes. BMC Evolutionary Biology, 2014, 14, 99.	3.2	27
84	Approaches for Assessing Phylogenetic Accuracy. Systematic Biology, 1995, 44, 3.	5.6	26
85	Contemporary Methods and Evidence for Species Delimitation. Ichthyology and Herpetology, 2021, 109,	0.8	22
86	How mitonuclear discordance and geographic variation have confounded species boundaries in a widely studied snake. Molecular Phylogenetics and Evolution, 2021, 162, 107194.	2.7	21
87	Asexual Evolution: Can Species Exist without Sex?. Current Biology, 2007, 17, R543-R544.	3.9	20
88	Evolutionary history of the genus Rhogeessa (Chiroptera: Vespertilionidae) as revealed by mitochondrial DNA sequences. Journal of Mammalogy, 2008, 89, 744-754.	1.3	18
89	Speciation by monobrachial centric fusions: A test of the model using nuclear DNA sequences from the bat genus Rhogeessa. Molecular Phylogenetics and Evolution, 2009, 50, 256-267.	2.7	18
90	The relationships of the coelacanth Latimeria chalumnae: evidence from sequences of vertebrate 28S ribosomal RNA genes. Environmental Biology of Fishes, 1991, 32, 119-130.	1.0	17

#	Article	IF	CITATIONS
91	A Genomic Approach for Distinguishing between Recent and Ancient Admixture as Applied to Cattle. Journal of Heredity, 2014, 105, 445-456.	2.4	15
92	Life in the hot zone around Chernobyl. Nature, 1996, 380, 665-666.	27.8	13
93	Molecular evolution of Na ⁺ channels in teleost fishes. Integrative Zoology, 2009, 4, 64-74.	2.6	10
94	Out of Africa â€" through a genetic bottleneck. Nature, 1986, 323, 208-208.	27.8	9
95	A Molecular Test of Bat Relationships: Monophyly or Diphyly?. Systematic Biology, 1992, 41, 222.	5.6	9
96	THE HISTORY OF A NEARCTIC COLONIZATION: MOLECULAR PHYLOGENETICS AND BIOGEOGRAPHY OF THE NEARCTIC TOADS (BUFO). Evolution; International Journal of Organic Evolution, 2004, 58, 2517.	2.3	9
97	Phylogeographic Structure and Color Pattern Variation among Populations of Plethodon albagula on the Edwards Plateau of Central Texas. Copeia, 2006, 2006, 760-768.	1.3	9
98	A New Species of Frog of the Rana tarahumarae Group from Southwestern Mexico. Copeia, 1984, 1984, 398.	1.3	8
99	Structural and evolutionary comparisons of four alleles of the mouse immunoglobulin kappa chain gene,lgk-VSer. Immunogenetics, 1989, 29, 249-257.	2.4	8
100	Structural and evolutionary comparisons of four alleles of the mouse Igk-J locus which encodes immunoglobulin kappa light chain joining (J K) segments. Immunogenetics, 1989, 29, 389-396.	2.4	6
101	Genomic adaptations for arboreal locomotion in Asian flying treefrogs. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2116342119.	7.1	6
102	HOMOLOGY IN MOLECULAR BIOLOGY. , 1994, , 339-368.		5
103	THE IMPORTANCE OF THE ONTOGENETIC NICHE IN RESOURCE-ASSOCIATED DIVERGENCE: EVIDENCE FROM A GENERALIST GRASSHOPPER. Evolution; International Journal of Organic Evolution, 2002, 56, 731.	2.3	4
104	Biodiversity discovery and its importance to conservation. , 0, , 1-34.		4
105	Does breeding season variation affect evolution of a sexual signaling trait in a tropical lizard clade?. Ecology and Evolution, 2020, 10, 3738-3746.	1.9	4
106	Are big trees indeed easy? Reply from D.M. Hillis. Trends in Ecology and Evolution, 1997, 12, 358.	8.7	3
107	Rates of evolution and fossils in phylogenetic analysis: a computer simulation approach. The Paleontological Society Special Publications, 1992, 6, 140-140.	0.0	0
108	Evolution in the Fast Lane. Science, 1994, 264, 1008-1010.	12.6	0

#	Article	IF	CITATIONS
109	Expression of rhodopsin and opsin in lateâ€stage epigean and hypogean salamander embryos. FASEB Journal, 2022, 36, .	0.5	0