Robert M Pringle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1190965/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Accelerated modern human–induced species losses: Entering the sixth mass extinction. Science Advances, 2015, 1, e1400253.	10.3	2,475
2	DNA metabarcoding illuminates dietary niche partitioning by African large herbivores. Proceedings of the United States of America, 2015, 112, 8019-8024.	7.1	431
3	Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science, 2015, 349, 302-305.	12.6	315
4	Termite mounds can increase the robustness of dryland ecosystems to climatic change. Science, 2015, 347, 651-655.	12.6	202
5	Spatial Pattern Enhances Ecosystem Functioning in an African Savanna. PLoS Biology, 2010, 8, e1000377.	5.6	198
6	Upgrading protected areas to conserve wild biodiversity. Nature, 2017, 546, 91-99.	27.8	197
7	Large carnivores make savanna tree communities less thorny. Science, 2014, 346, 346-349.	12.6	176
8	Covariation of diet and gut microbiome in African megafauna. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23588-23593.	7.1	156
9	A theoretical foundation for multi-scale regular vegetation patterns. Nature, 2017, 541, 398-401.	27.8	150
10	ELEPHANTS AS AGENTS OF HABITAT CREATION FOR SMALL VERTEBRATES AT THE PATCH SCALE. Ecology, 2008, 89, 26-33.	3.2	149
11	Warfare and wildlife declines in Africa's protected areas. Nature, 2018, 553, 328-332.	27.8	138
12	Cascading impacts of large-carnivore extirpation in an African ecosystem. Science, 2019, 364, 173-177.	12.6	113
13	Predator-induced collapse of niche structure and species coexistence. Nature, 2019, 570, 58-64.	27.8	109
14	Microbial nitrogen limitation in the mammalian large intestine. Nature Microbiology, 2018, 3, 1441-1450.	13.3	107
15	Ecological legacies of civil war: 35â€year increase in savanna tree cover following wholesale largeâ€mammal declines. Journal of Ecology, 2016, 104, 79-89.	4.0	90
16	Piecewise Disassembly of a Large-Herbivore Community across a Rainfall Gradient: The UHURU Experiment. PLoS ONE, 2013, 8, e55192.	2.5	80
17	Molecular detection of invertebrate prey in vertebrate diets: trophic ecology of <scp>C</scp> aribbean island lizards. Molecular Ecology Resources, 2015, 15, 903-914.	4.8	72
18	Elephants in the understory: opposing direct and indirect effects of consumption and ecosystem engineering by megaherbivores. Ecology, 2016, 97, 3219-3230.	3.2	72

ROBERT M PRINGLE

#	Article	IF	CITATIONS
19	War-induced collapse and asymmetric recovery of large-mammal populations in Gorongosa National Park, Mozambique. PLoS ONE, 2019, 14, e0212864.	2.5	72
20	Spatial Self-Organization of Ecosystems: Integrating Multiple Mechanisms of Regular-Pattern Formation. Annual Review of Entomology, 2017, 62, 359-377.	11.8	70
21	Large herbivores promote habitat specialization and beta diversity of African savanna trees. Ecology, 2016, 97, 2640-2657.	3.2	61
22	Determinants of elephant foraging behaviour in a coupled humanâ€natural system: Is brown the new green?. Journal of Animal Ecology, 2019, 88, 780-792.	2.8	61
23	Trophic ecology of large herbivores in a reassembling African ecosystem. Journal of Ecology, 2019, 107, 1355-1376.	4.0	58
24	Low functional redundancy among mammalian browsers in regulating an encroaching shrub () Tj ETQq0 0 0 rgBT Sciences, 2014, 281, 20140390.	/Overlock 2.6	10 Tf 50 54 53
25	Conservation lessons from largeâ€mammal manipulations in East African savannas: the KLEE, UHURU, and GLADE experiments. Annals of the New York Academy of Sciences, 2018, 1429, 31-49.	3.8	53
26	Trophic rewilding revives biotic resistance to shrub invasion. Nature Ecology and Evolution, 2020, 4, 712-724.	7.8	53
27	Resolving Food-Web Structure. Annual Review of Ecology, Evolution, and Systematics, 2020, 51, 55-80.	8.3	53
28	Synergistic effects of fire and elephants on arboreal animals in an <scp>A</scp> frican savanna. Journal of Animal Ecology, 2015, 84, 1637-1645.	2.8	48
29	Recovery of African wild dogs suppresses prey but does not trigger a trophic cascade. Ecology, 2015, 96, 2705-2714.	3.2	47
30	Does primary productivity modulate the indirect effects of large herbivores? A global metaâ€analysis. Journal of Animal Ecology, 2016, 85, 857-868.	2.8	46
31	Dynamic landscapes of fear: understanding spatiotemporal risk. Trends in Ecology and Evolution, 2022, 37, 911-925.	8.7	46
32	Multiple dimensions of dietary diversity in large mammalian herbivores. Journal of Animal Ecology, 2020, 89, 1482-1496.	2.8	42
33	Ivory poaching and the rapid evolution of tusklessness in African elephants. Science, 2021, 374, 483-487.	12.6	42
34	Woody plant biomass and carbon exchange depend on elephantâ€fire interactions across a productivity gradient in African savanna. Journal of Ecology, 2017, 105, 111-121.	4.0	40
35	Good neighbors make good defenses: associational refuges reduce defense investment in African savanna plants. Ecology, 2018, 99, 1724-1736.	3.2	32
36	The Epigenetic Signature of Colonizing New Environments in Anolis Lizards. Molecular Biology and Evolution, 2019, 36, 2165-2170.	8.9	31

ROBERT M PRINGLE

#	Article	IF	CITATIONS
37	Plant DNAâ€barcode library and community phylogeny for a semiâ€arid East African savanna. Molecular Ecology Resources, 2019, 19, 838-846.	4.8	30
38	An experimental test of communityâ€based strategies for mitigating human–wildlife conflict around protected areas. Conservation Letters, 2020, 13, e12679.	5.7	30
39	Glade cascades: indirect legacy effects of pastoralism enhance the abundance and spatial structuring of arboreal fauna. Ecology, 2013, 94, 827-837.	3.2	27
40	Climatic stress mediates the impacts of herbivory on plant population structure and components of individual fitness. Journal of Ecology, 2013, 101, 1074-1083.	4.0	25
41	Climatic variation modulates the indirect effects of large herbivores on smallâ€mammal habitat use. Journal of Animal Ecology, 2017, 86, 739-748.	2.8	23
42	Ecological and behavioral mechanisms of densityâ€dependent habitat expansion in a recovering African ungulate population. Ecological Monographs, 2021, 91, e01476.	5.4	19
43	Ecological Importance of Large Herbivores in the Ewaso Ecosystem. Smithsonian Contributions To Zoology, 2011, , 43-53.	1.5	19
44	Plant and smallâ€mammal responses to largeâ€herbivore exclusion in an African savanna: five years of the UHURU experiment. Ecology, 2014, 95, 787-787.	3.2	18
45	Using DNA Metabarcoding To Evaluate the Plant Component of Human Diets: a Proof of Concept. MSystems, 2019, 4, .	3.8	18
46	Seasonal patterns in decomposition and nutrient release from East African savanna grasses grown under contrasting nutrient conditions. Agriculture, Ecosystems and Environment, 2014, 188, 12-19.	5.3	15
47	Spatial patterning of soil microbial communities created by fungusâ€farming termites. Molecular Ecology, 2020, 29, 4487-4501.	3.9	15
48	Mechanisms of dietary resource partitioning in largeâ€herbivore assemblages: A plantâ€traitâ€based approach. Journal of Ecology, 2022, 110, 817-832.	4.0	13
49	How large herbivores subsidize aquatic food webs in African savannas. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7489-7491.	7.1	10
50	Large herbivores transform plant-pollinator networks in an African savanna. Current Biology, 2021, 31, 2964-2971.e5.	3.9	10
51	Large herbivores suppress liana infestation in an African savanna. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
52	Ecology: Megaherbivores Homogenize the Landscape of Fear. Current Biology, 2018, 28, R835-R837.	3.9	9
53	Strong but opposing effects of associational resistance and susceptibility on defense phenotype in an African savanna plant. Oikos, 2019, 128, 1772-1782.	2.7	9
54	HEAD SIZE OF MALE AND FEMALE LIZARDS INCREASES WITH POPULATION DENSITY ACROSS ISLAND POPULATIONS IN THE BAHAMAS. Breviora, 2019, 566, 1.	0.5	9

ROBERT M PRINGLE

#	Article	IF	CITATIONS
55	Dietary abundance distributions: Dominance and diversity in vertebrate diets. Ecology Letters, 2022, 25, 992-1008.	6.4	9
56	The gastrointestinal nematodes of plains and Grevy's zebras: Phylogenetic relationships and host specificity. International Journal for Parasitology: Parasites and Wildlife, 2021, 16, 228-235.	1.5	8
57	BoomBox: An Automated Behavioural Response (ABR) camera trap module for wildlife playback experiments. Methods in Ecology and Evolution, 2022, 13, 611-618.	5.2	8
58	Experimental evidence that effects of megaherbivores on mesoherbivore space use are influenced by species' traits. Journal of Animal Ecology, 2021, 90, 2510-2522.	2.8	7
59	Ecological consequences of large herbivore exclusion in an <scp>A</scp> frican savanna: 12 years of data from the <scp>UHURU</scp> experiment. Ecology, 2022, 103, e3649.	3.2	6
60	Large-herbivore nemabiomes: patterns of parasite diversity and sharing. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212702.	2.6	6
61	Allometry of behavior and niche differentiation among congeneric African antelopes. Ecological Monographs, 2023, 93, .	5.4	6
62	Resource availability and heterogeneity shape the selfâ€organisation of regular spatial patterning. Ecology Letters, 2021, 24, 1880-1891.	6.4	5
63	Paleoecology: The Functional Uniqueness of Ancient Megafauna. Current Biology, 2020, 30, R32-R35.	3.9	4
64	Ecology: A revolution in resource partitioning. Current Biology, 2021, 31, R1474-R1476.	3.9	4
65	Large Herbivore Loss in a Kenyan Savanna: Data from the UHURU Experiment. Bulletin of the Ecological Society of America, 2022, 103	0.2	0