Elias J Fernandez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11905302/publications.pdf Version: 2024-02-01

FLIAS | FEDNANDEZ

#	Article	IF	CITATIONS
1	Regulatory Mechanics of Constitutive Androstane Receptors: Basal and Ligand-Directed Actions. Journal of Chemical Information and Modeling, 2019, 59, 5174-5182.	5.4	8
2	Hepatic stellate cell activation: A source for bioactive lipids. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 629-642.	2.4	34
3	Lrg1 Regulates β (1,3)-Glucan Masking in Candida albicans through the Cek1 MAP Kinase Pathway. MBio, 2019, 10, .	4.1	24
4	Allosteric pathways in nuclear receptors — Potential targets for drug design. , 2018, 183, 152-159.		22
5	<scp>DNA</scp> â€induced unfolding of the thyroid hormone receptor α A/B domain through allostery. FEBS Open Bio, 2017, 7, 854-864.	2.3	1
6	The Promiscuity of Allosteric Regulation of Nuclear Receptors by Retinoid X Receptor. Journal of Physical Chemistry B, 2016, 120, 8338-8345.	2.6	18
7	Mapping Allostery through Computational Glycine Scanning and Correlation Analysis of Residue–Residue Contacts. Biochemistry, 2015, 54, 1534-1541.	2.5	35
8	Agonist Ligands Mediate the Transcriptional Response of Nuclear Receptor Heterodimers through Distinct Stoichiometric Assemblies with Coactivators. Journal of Biological Chemistry, 2014, 289, 24771-24778.	3.4	15
9	Structural basis for negative cooperativity within agonist-bound TR:RXR heterodimers. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6084-6087.	7.1	38
10	Helix 11 Dynamics Is Critical for Constitutive Androstane Receptor Activity. Structure, 2011, 19, 37-44.	3.3	26
11	Direct Interdomain Interactions Can Mediate Allosterism in the Thyroid Receptor. Journal of Biological Chemistry, 2009, 284, 22517-22524.	3.4	33
12	Thermodynamic Characterization of the Interaction between CARâ^'RXR and SRC-1 Peptide by Isothermal Titration Calorimetryâ€. Biochemistry, 2007, 46, 862-870.	2.5	23
13	Structure of the Murine Constitutive Androstane Receptor Complexed to Androstenol. Molecular Cell, 2004, 16, 907-917.	9.7	68
14	STRUCTURE, FUNCTION,ANDINHIBITION OFCHEMOKINES. Annual Review of Pharmacology and Toxicology, 2002, 42, 469-499.	9.4	544
15	A cryocooling technique for protein crystals grown by dialysis from volatile solvents. Journal of Applied Crystallography, 2000, 33, 168-171.	4.5	4
16	Comparison of the Structure of vMIP-II with Eotaxin-1, RANTES, and MCP-3 Suggests a Unique Mechanism for CCR3 Activation,. Biochemistry, 2000, 39, 12837-12844.	2.5	35