Andres Parra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1190172/publications.pdf Version: 2024-02-01

ANDDES DADDA

#	Article	IF	CITATIONS
1	Synthesis and Biological Activity of Triterpene–Coumarin Conjugates. Journal of Natural Products, 2021, 84, 1587-1597.	3.0	15
2	Efficient In Vitro and In Vivo Anti-Inflammatory Activity of a Diamine-PEGylated Oleanolic Acid Derivative. International Journal of Molecular Sciences, 2021, 22, 8158.	4.1	7
3	Maslinic Acid Nanoparticles: A Drug to Carry Others. Materials Proceedings, 2021, 4, 6.	0.2	0
4	A Diamine-PEGylated Oleanolic Acid Derivative Induced Efficient Apoptosis through a Death Receptor and Mitochondrial Apoptotic Pathway in HepG2 Human Hepatoma Cells. Biomolecules, 2020, 10, 1375.	4.0	18
5	Atmospheric water triggers supramolecular gel formation of novel low molecular weight maslinic and oleanolic triterpenic derivatives. Materials Chemistry Frontiers, 2019, 3, 2637-2646.	5.9	10
6	Novel Oleanolic and Maslinic Acid Derivatives as a Promising Treatment against Bacterial Biofilm in Nosocomial Infections: An in Vitro and in Vivo Study. ACS Infectious Diseases, 2019, 5, 1581-1589.	3.8	43
7	Oleanolic Acid Derivatives as Potential Inhibitors of HIV-1 Protease. Journal of Natural Products, 2019, 82, 2886-2896.	3.0	29
8	Maslinic acid conjugate with 7-amino-4-methylcoumarin as probe to monitor the temperature dependent conformational changes of human serum albumin by FRET. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 214, 161-169.	3.9	6
9	Quantitative NMR analysis ofLâ€Dopa in seeds from two varieties ofMucuna pruriens. Phytochemical Analysis, 2019, 30, 89-94.	2.4	14
10	Diamine and PEGylated-diamine conjugates of triterpenic acids as potential anticancer agents. European Journal of Medicinal Chemistry, 2018, 148, 325-336.	5.5	28
11	Semisynthesis of ï‰-Hydroxyalkylcarbonate Derivatives of Hydroxytyrosol as Antitrypanosome Agents. Journal of Natural Products, 2018, 81, 2075-2082.	3.0	6
12	Hydrogenâ€Treated Rutile TiO ₂ Shell in Graphiteâ€Core Structure as a Negative Electrode for Highâ€Performance Vanadium Redox Flow Batteries. ChemSusChem, 2017, 10, 2089-2098.	6.8	58
13	Synthesis and in vitro antiproliferative evaluation of PEGylated triterpene acids. Fìtoterapìâ, 2017, 120, 25-40.	2.2	22
14	Microwave-assisted extraction versus Soxhlet extraction to determine triterpene acids in olive skins. Journal of Separation Science, 2017, 40, 1209-1217.	2.5	34
15	Identification of gutâ€derived metabolites of maslinic acid, a bioactive compound from <i>Olea europaea</i> L. Molecular Nutrition and Food Research, 2016, 60, 2053-2064.	3.3	11
16	Semi-synthesis and antiproliferative evaluation of PEGylated pentacyclic triterpenes. European Journal of Medicinal Chemistry, 2016, 118, 64-78.	5.5	34
17	The oleanolic acid derivative, 3-O-succinyl-28-O-benzyl oleanolate, induces apoptosis in B16–F10 melanoma cells via the mitochondrial apoptotic pathway. RSC Advances, 2016, 6, 93590-93601.	3.6	23
18	Biotransformation of Salpichrolides A, C, and G by Three Filamentous Fungi. Journal of Natural Products, 2016, 79, 1658-1667.	3.0	8

ANDRES PARRA

#	Article	IF	CITATIONS
19	Synthesis and Antioxidant Activity of Hydroxytyrosol Alkyl-Carbonate Derivatives. Journal of Natural Products, 2016, 79, 1737-1745.	3.0	14
20	Simultaneous presence of dynamic and sphere action component in the fluorescence quenching of human serum albumin by diphthaloylmaslinic acid. Journal of Luminescence, 2016, 178, 259-266.	3.1	24
21	Maslinic Acid, a Natural Triterpene, Induces a Death Receptor-Mediated Apoptotic Mechanism in Caco-2 p53-Deficient Colon Adenocarcinoma Cells. PLoS ONE, 2016, 11, e0146178.	2.5	43
22	Interaction between the anti-cancer drug diacetyl maslinic acid and bovine serum albumin: A biophysical study. Journal of Molecular Liquids, 2015, 208, 304-313.	4.9	37
23	Identification in Rat Plasma and Urine by Linear Trap Quadrupole–Orbitrap Mass Spectrometry of the Metabolites of Maslinic Acid, a Triterpene from Olives. Journal of Agricultural and Food Chemistry, 2015, 63, 1126-1132.	5.2	14
24	Semi-synthesis of taraxerane triterpenoids from oleanolic acid. Tetrahedron, 2015, 71, 792-800.	1.9	5
25	Energetics of albumin-disuccinylmaslinic acid binding determined by fluorescence spectroscopy. Fluid Phase Equilibria, 2015, 400, 43-52.	2.5	6
26	Biotransformation of oleanolic and maslinic methyl esters by Rhizomucor miehei CECT 2749. Phytochemistry, 2015, 117, 500-508.	2.9	16
27	Effect of the Solvent and the Sample Preparation on the Determination of Triterpene Compounds in Two-Phase Olive-Mill-Waste Samples. Journal of Agricultural and Food Chemistry, 2015, 63, 4269-4275.	5.2	22
28	Semi-synthesis of acylated triterpenes from olive-oil industry wastes for the development of anticancer and anti-HIV agents. European Journal of Medicinal Chemistry, 2014, 74, 278-301.	5.5	39
29	Spectroscopic investigation on the interaction of maslinic acid with bovine serum albumin. Journal of Luminescence, 2014, 156, 141-149.	3.1	45
30	Solid-Phase Library Synthesis of Bi-Functional Derivatives of Oleanolic and Maslinic Acids and Their Cytotoxicity on Three Cancer Cell Lines. ACS Combinatorial Science, 2014, 16, 428-447.	3.8	30
31	Tuning the Fermi Level and the Kinetics of Surface States of TiO ₂ Nanorods by Means of Ammonia Treatments. Journal of Physical Chemistry C, 2013, 117, 20517-20524.	3.1	59
32	Antiallodynic and Analgesic Effects of Maslinic Acid, a Pentacyclic Triterpenoid from <i>Olea europaea</i> . Journal of Natural Products, 2013, 76, 737-740.	3.0	30
33	Enzymatic glycosylation of terpenoids. Phytochemistry Reviews, 2013, 12, 327-339.	6.5	37
34	Biotransformation of oleanolic and maslinic acids by Rhizomucor miehei. Phytochemistry, 2013, 94, 229-237.	2.9	40
35	On/off electrochemical switches based on quinone-bisketals. Chemical Communications, 2011, 47, 1586-1588.	4.1	18
36	Organic-based molecular switches for molecular electronics. Nanoscale, 2011, 3, 4003.	5.6	91

ANDRES PARRA

#	Article	IF	CITATIONS
37	Maslinic acid derivatives induce significant apoptosis in b16f10 murine melanoma cells. European Journal of Medicinal Chemistry, 2011, 46, 5991-6001.	5.5	41
38	Conductance and application of organic molecule pairs as nanofuses. Physical Review B, 2011, 83, .	3.2	10
39	Anticoccidial activity of maslinic acid against infection with Eimeria tenella in chickens. Parasitology Research, 2010, 107, 601-604.	1.6	46
40	Bioactive Compounds with Added Value Prepared from Terpenes Contained in Solid Wastes from the Olive Oil Industry. Chemistry and Biodiversity, 2010, 7, 421-439.	2.1	12
41	Action of a Pentacyclic Triterpenoid, Maslinic Acid, against <i>Toxoplasma gondii</i> . Journal of Natural Products, 2010, 73, 831-834.	3.0	36
42	Different pathways for the deoxygenation of the A-ring of natural triterpene compounds. Natural Product Research, 2010, 24, 177-196.	1.8	7
43	Solution- and solid-phase synthesis and anti-HIV activity of maslinic acid derivatives containing amino acids and peptides. Bioorganic and Medicinal Chemistry, 2009, 17, 1139-1145.	3.0	63
44	Computational Study of a Nanofuse Based on Organic Molecules. , 2009, , .		0
45	Biotransformations of Sesquiterpenoids by Rhizopus Species. Current Organic Chemistry, 2009, 13, 1182-1193.	1.6	2
46	Microbial Transformation of Triterpenoids. Mini-Reviews in Organic Chemistry, 2009, 6, 307-320.	1.3	52
47	Manoyl-Oxide Biotransformations with Filamentous Fungi. Current Organic Chemistry, 2007, 11, 679-692.	1.6	9
48	Seven-Membered Cyclic Sulfite Eudesmane Derivatives:  Partial Synthesis, Structural Determination, and Enzymatic Resolution. Journal of Organic Chemistry, 2007, 72, 643-646.	3.2	15
49	Remote Hydroxylation of Methyl Groups by Regioselective Cyclopalladation. Partial Synthesis of Hyptatic Acid-A. Journal of Organic Chemistry, 2007, 72, 3500-3509.	3.2	50
50	Reactivity of Chiral Sesquiterpene Synthons Obtained by the Degradation of Maslinic Acid from Oliveâ€Pressing Residues. Synthetic Communications, 2006, 36, 3001-3018.	2.1	7
51	ent-Kauranoid derivatives from Sideritis moorei. Phytochemistry, 2005, 66, 1492-1498.	2.9	7
52	Use of p-nitrobenzyloxycarbonyl (pNZ) as a permanent protecting group in the synthesis of Kahalalide F analogs. Tetrahedron Letters, 2005, 46, 7737-7741.	1.4	18
53	Partial synthesis of C-ring derivatives from oleanolic and maslinic acids. Formation of several triene systems by chemical and photochemical isomerization processes. Tetrahedron, 2004, 60, 1491-1503.	1.9	31
54	Oxidation of several triterpenic diene and triene systems. Oxidative cleavage to obtain chiral intermediates for drimane and phenanthrene semi-synthesis. Tetrahedron, 2004, 60, 3831-3845.	1.9	19

Andres Parra

#	Article	IF	CITATIONS
55	Degradation of triterpenic compounds from olive-pressing residues. Synthesis of trans-decalin type chiral synthons. Tetrahedron Letters, 2003, 44, 6673-6677.	1.4	11
56	Epoxides, Cyclic Sulfites, and Sulfate from Natural Pentacyclic Triterpenoids:Â Theoretical Calculations and Chemical Transformations. Journal of Organic Chemistry, 2003, 68, 4833-4844.	3.2	38
57	Antioxidant Activity of Maslinic Acid, a Triterpene Derivative Obtained fromOlea europaea. Planta Medica, 2003, 69, 472-474.	1.3	146
58	Chemical-Microbiological Synthesis of Cryptomeridiol Derivatives byGliocladiumroseum:Â Semisynthesis of 11-Hydroxyeudesmanolides. Journal of Natural Products, 2002, 65, 1011-1015.	3.0	13
59	Semi-synthesis of triterpene A-ring derivatives from oleanolic and maslinic acids. Part II. Theoretical and experimental 13C chemical shiftsâ€. Journal of Chemical Research, 2000, 2000, 211-212.	1.3	3
60	Chemical Semisynthesis and Biotransformation with Rhizopus nigricans of Several Sesquiterpenes: Obtention of New 1α- and 2α-Hydroxyselinane Derivatives. Tetrahedron, 2000, 56, 6517-6526.	1.9	10
61	Semi-Synthesis of Triterpene A-ring Derivatives from Oleanolic and Maslinic Acids. Theoretical and experimental ¹³ C chemical shifts. Journal of Chemical Research, 2000, 2000, 56-57.	1.3	7
62	Regioselective Enzymatic Acylations of Polyhydroxylated Eudesmanes:Â Semisynthesis, Theoretical Calculations, and Biotransformation of Cyclic Sulfites. Journal of Organic Chemistry, 2000, 65, 8214-8223.	3.2	22
63	Chemical, enzymatic and microbiological synthesis of 8,12-eudesmanolides: Synthesis of sivasinolide and yomogin analogues. Tetrahedron, 1998, 54, 14421-14436.	1.9	22
64	3-b-Hydroxyolean-12-en-28-oic Acid (Oleanolic Acid). Molecules, 1998, 3, M87.	3.8	12
65	2-a, 3-b-Dihydroxyolean-12-en-28-oic Acid (Maslinic Acid). Molecules, 1998, 3, M88.	3.8	23
66	Biotransformation of ent-Atisenes and ent-Beyerenes by Rhizopus nigricans and Fusarium moniliforme Cultures. Journal of Natural Products, 1997, 60, 86-92.	3.0	4
67	Ruthenium-Catalyzed Rearrangement ofent-14-(Benzoyloxy)-15,16-epoxybeyerane Diterpenes. Journal of Natural Products, 1996, 59, 124-130.	3.0	5
68	Synthesis of enantio-manoyl oxides: Modifiers of the activity of adenylatecyclase enzyme. Phytochemistry, 1995, 38, 287-293.	2.9	10
69	Novel Opening of 15,16-Epoxybeyerane Diterpenes in Ruthenium-Catalyzed Rearrangement Processes. Formation of Antheridiogen-like Rings. Journal of Organic Chemistry, 1995, 60, 7552-7557.	3.2	2
70	Microbial Transformations of 6α- and 6β-Eudesmanolides by Rhizopus nigricans Cultures. Journal of Natural Products, 1995, 58, 1498-1507.	3.0	11
71	Opening of Ring C in Ruthenium-Catalyzed Rearrangements of 15,16-Epoxybeyerane Diterpenes Hydroxylated at C-12. Journal of Organic Chemistry, 1995, 60, 2170-2173.	3.2	6
72	Biotransformation of ent-beyerenones by Rhizopus nigricans and Curvularia lunata cultures. Phytochemistry, 1994, 36, 657-663.	2.9	4

Andres Parra

#	Article	IF	CITATIONS
73	Chemical-microbiological synthesis of ent-13-epi-manoyl oxides with biological activities. Phytochemistry, 1994, 37, 741-747.	2.9	23
74	Products with biological activity obtained from in vitro micropropagated Sideritis foetens. Phytochemistry, 1994, 35, 645-650.	2.9	21
75	Partial synthesis of 6β-eudesmanolides and 6β-guaianolides from 6α-eudesmanolides: Synthesis of analogues of artepaulin, colartin and tannunolide D. Tetrahedron, 1994, 50, 2917-2928.	1.9	11
76	Rearrangements of 14-mesyloxy-ent-beyer-15-enes. Tetrahedron, 1994, 50, 10761-10770.	1.9	5
77	Antimicrobial activity of natural and semisynthetic diterpenoids from Sideritis spp. Microbios, 1994, 77, 7-13.	0.3	12
78	Chemical-microbiological synthesis of 6β-eudesmanolides from 11-hydroxyl derivatives obtained by Rhizopus nigricans cultures: Synthesis of 6β-dendroserins. Tetrahedron, 1993, 49, 1091-1102.	1.9	18
79	Partial synthesis of 6β-sesquiterpenolides from 6α-sesquiterpenolides. Tetrahedron Letters, 1992, 33, 3935-3938.	1.4	7
80	Rearrangement processes in the bicyclo[3.2.1]heptane moiety of 12,17-bifunctionalized ent-beyer-15-enes. Tetrahedron, 1991, 47, 9103-9118.	1.9	6
81	Studies on the Relationship of Structure to Antimicrobial Properties of Diterpenoid Compounds fromSideritis. Planta Medica, 1988, 54, 301-304.	1.3	32
82	Atisideritol, a new ent-atis-13-ene from a sideritis pusilla (Lag) Pau ssp. Tetrahedron Letters, 1980, 21, 3611-3612.	1.4	5