George Q Daley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11899367/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	LIN28 coordinately promotes nucleolar/ribosomal functions and represses the 2C-like transcriptional program in pluripotent stem cells. Protein and Cell, 2022, 13, 490-512.	11.0	28
2	Dipping a toe in the fountain of youth. Nature Aging, 2022, 2, 192-194.	11.6	0
3	Developmental maturation of the hematopoietic system controlled by a Lin28b-let-7-Cbx2 axis. Cell Reports, 2022, 39, 110587.	6.4	12
4	CellComm infers cellular crosstalk that drives haematopoietic stem and progenitor cell development. Nature Cell Biology, 2022, 24, 579-589.	10.3	11
5	Hypoxic, glycolytic metabolism is a vulnerability of B-acute lymphoblastic leukemia-initiating cells. Cell Reports, 2022, 39, 110752.	6.4	5
6	ISSCR Guidelines for Stem Cell Research and Clinical Translation: The 2021 update. Stem Cell Reports, 2021, 16, 1398-1408.	4.8	134
7	Lin28 paralogs regulate lung branching morphogenesis. Cell Reports, 2021, 36, 109408.	6.4	5
8	Sequential regulation of hemogenic fate and hematopoietic stem and progenitor cell formation from arterial endothelium by Ezh1/2. Stem Cell Reports, 2021, 16, 1718-1734.	4.8	11
9	Evidence generation and reproducibility in cell and gene therapy research: A call to action. Molecular Therapy - Methods and Clinical Development, 2021, 22, 11-14.	4.1	13
10	rRNA biogenesis regulates mouse 2C-like state by 3D structure reorganization of peri-nucleolar heterochromatin. Nature Communications, 2021, 12, 6365.	12.8	24
11	LIN28B alters ribosomal dynamics to promote metastasis in MYCN-driven malignancy. Journal of Clinical Investigation, 2021, 131, .	8.2	12
12	Mitochondrial and Redox Modifications in Huntington Disease Induced Pluripotent Stem Cells Rescued by CRISPR/Cas9 CAGs Targeting. Frontiers in Cell and Developmental Biology, 2020, 8, 576592.	3.7	24
13	Metabolic Regulation of Inflammasome Activity Controls Embryonic Hematopoietic Stem and Progenitor Cell Production. Developmental Cell, 2020, 55, 133-149.e6.	7.0	50
14	Diversification of reprogramming trajectories revealed by parallel single-cell transcriptome and chromatin accessibility sequencing. Science Advances, 2020, 6, .	10.3	37
15	A nanobody targeting the LIN28:let-7 interaction fragment of TUT4 blocks uridylation of let-7. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4653-4663.	7.1	15
16	LIN28B regulates transcription and potentiates MYCN-induced neuroblastoma through binding to ZNF143 at target gene promotors. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16516-16526.	7.1	31
17	Pancreatic circulating tumor cell profiling identifies LIN28B as a metastasis driver and drug target. Nature Communications, 2020, 11, 3303.	12.8	55
18	Introduction to the Special Issue on CRISPR. Perspectives in Biology and Medicine, 2020, 63, 1-13.	0.5	1

#	Article	IF	CITATIONS
19	YAP Regulates Hematopoietic Stem Cell Formation in Response to the Biomechanical Forces of Blood Flow. Developmental Cell, 2020, 52, 446-460.e5.	7.0	65
20	Transcriptome Dynamics of Hematopoietic Stem Cell Formation Revealed Using a Combinatorial Runx1 and Ly6a Reporter System. Stem Cell Reports, 2020, 14, 956-971.	4.8	8
21	An induced pluripotent stem cell model of Fanconi anemia reveals mechanisms of p53-driven progenitor cell differentiation. Blood Advances, 2020, 4, 4679-4692.	5.2	1
22	A systems biology pipeline identifies regulatory networks for stem cell engineering. Nature Biotechnology, 2019, 37, 810-818.	17.5	18
23	The Lin28/let-7 Pathway Regulates the Mammalian Caudal Body Axis Elongation Program. Developmental Cell, 2019, 48, 396-405.e3.	7.0	60
24	Stem Cells in the Treatment of Disease. New England Journal of Medicine, 2019, 380, 1748-1760.	27.0	152
25	The developmental stage of the hematopoietic niche regulates lineage in <i>MLL-</i> rearranged leukemia. Journal of Experimental Medicine, 2019, 216, 527-538.	8.5	27
26	Induced pluripotent stem cells in disease modelling and drug discovery. Nature Reviews Genetics, 2019, 20, 377-388.	16.3	411
27	Lin28b regulates age-dependent differences in murine platelet function. Blood Advances, 2019, 3, 72-82.	5.2	22
28	Lin28 and let-7 regulate the timing of cessation of murine nephrogenesis. Nature Communications, 2019, 10, 168.	12.8	55
29	Reconstruction of complex single-cell trajectories using CellRouter. Nature Communications, 2018, 9, 892.	12.8	78
30	A CLK3-HMGA2 Alternative Splicing Axis Impacts Human Hematopoietic Stem Cell Molecular Identity throughout Development. Cell Stem Cell, 2018, 22, 575-588.e7.	11.1	40
31	Regulation of embryonic haematopoietic multipotency by EZH1. Nature, 2018, 553, 506-510.	27.8	70
32	Small-Molecule Inhibitors Disrupt let-7 Oligouridylation and Release the Selective Blockade of let-7 Processing by LIN28. Cell Reports, 2018, 23, 3091-3101.	6.4	81
33	Disruptive reproductive technologies. Science Translational Medicine, 2017, 9, .	12.4	30
34	Signaling through RNA-binding proteins as a cell fate regulatory mechanism. Cell Cycle, 2017, 16, 723-724.	2.6	2
35	Drug discovery for Diamond-Blackfan anemia using reprogrammed hematopoietic progenitors. Science Translational Medicine, 2017, 9, .	12.4	87
36	Reassembling embryos in vitro from component stem cells. Cell Research, 2017, 27, 961-962.	12.0	2

#	Article	IF	CITATIONS
37	Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature, 2017, 545, 432-438.	27.8	395
38	Using CRISPR-Cas9 to Generate Gene-Corrected Autologous iPSCs for the Treatment of Inherited Retinal Degeneration. Molecular Therapy, 2017, 25, 1999-2013.	8.2	121
39	Autophagy: It's in Your Blood. Developmental Cell, 2017, 40, 518-520.	7.0	3
40	Polar Extremes in the Clinical Use of Stem Cells. New England Journal of Medicine, 2017, 376, 1075-1077.	27.0	36
41	LIN28 phosphorylation by MAPK/ERK couples signalling to the post-transcriptional control ofÂpluripotency. Nature Cell Biology, 2017, 19, 60-67.	10.3	59
42	Comprehensive Mapping of Pluripotent Stem Cell Metabolism Using Dynamic Genome-Scale Network Modeling. Cell Reports, 2017, 21, 2965-2977.	6.4	61
43	Developmental regulation of myeloerythroid progenitor function by the <i>Lin28b</i> – <i>let-7</i> – <i>Hmga2</i> axis. Journal of Experimental Medicine, 2016, 213, 1497-1512.	8.5	62
44	Multiple mechanisms disrupt the let-7 microRNA family in neuroblastoma. Nature, 2016, 535, 246-251.	27.8	159
45	Engineered Murine HSCs Reconstitute Multi-lineage Hematopoiesis and Adaptive Immunity. Cell Reports, 2016, 17, 3178-3192.	6.4	25
46	Chronic myeloid leukemia: reminiscences and dreams. Haematologica, 2016, 101, 541-558.	3.5	92
47	Confronting stem cell hype. Science, 2016, 352, 776-777.	12.6	109
48	New ISSCR guidelines: clinical translation of stem cell research. Lancet, The, 2016, 387, 1979-1981.	13.7	42
49	Setting Global Standards for Stem Cell Research and Clinical Translation: TheÂ2016 ISSCR Guidelines. Stem Cell Reports, 2016, 6, 787-797.	4.8	172
50	Developmental Vitamin D Availability Impacts Hematopoietic Stem Cell Production. Cell Reports, 2016, 17, 458-468.	6.4	97
51	Progress towards generation of human haematopoietic stem cells. Nature Cell Biology, 2016, 18, 1111-1117.	10.3	68
52	Interferon-Î \pm signaling promotes embryonic HSC maturation. Blood, 2016, 128, 204-216.	1.4	36
53	LIN28 Regulates Stem Cell Metabolism and Conversion to Primed Pluripotency. Cell Stem Cell, 2016, 19, 66-80.	11.1	278
54	Engineering Hematopoietic Stem Cells: Lessons from Development. Cell Stem Cell, 2016, 18, 707-720.	11.1	79

#	Article	IF	CITATIONS
55	RNAi Reveals Phase-Specific Global Regulators of Human Somatic Cell Reprogramming. Cell Reports, 2016, 15, 2597-2607.	6.4	47
56	Sex-specific regulation of weight and puberty by the Lin28/let-7 axis. Journal of Endocrinology, 2016, 228, 179-191.	2.6	52
57	Policy: Global standards for stem-cell research. Nature, 2016, 533, 311-313.	27.8	41
58	Hematopoietic stem cells develop in the absence of endothelial cadherin 5 expression. Blood, 2015, 126, 2811-2820.	1.4	20
59	LIN28 cooperates with WNT signaling to drive invasive intestinal and colorectal adenocarcinoma in mice and humans. Genes and Development, 2015, 29, 1074-1086.	5.9	92
60	Metabolic Switches Linked to Pluripotency and Embryonic Stem Cell Differentiation. Cell Metabolism, 2015, 21, 349-350.	16.2	71
61	NF-κB activation impairs somatic cell reprogramming in ageing. Nature Cell Biology, 2015, 17, 1004-1013.	10.3	91
62	Two new routes to make blood: Hematopoietic specification from pluripotent cell lines versus reprogramming of somatic cells. Experimental Hematology, 2015, 43, 756-759.	0.4	5
63	Epoxyeicosatrienoic acids enhance embryonic haematopoiesis and adult marrow engraftment. Nature, 2015, 523, 468-471.	27.8	97
64	Integrative Analyses of Human Reprogramming Reveal Dynamic Nature of Induced Pluripotency. Cell, 2015, 162, 412-424.	28.9	206
65	De novo generation of HSCs from somatic and pluripotent stem cell sources. Blood, 2015, 125, 2641-2648.	1.4	97
66	Flow-induced protein kinase A–CREB pathway acts via BMP signaling to promote HSC emergence. Journal of Experimental Medicine, 2015, 212, 633-648.	8.5	47
67	Biomechanical forces promote blood development through prostaglandin E2 and the cAMP–PKA signaling axis. Journal of Experimental Medicine, 2015, 212, 665-680.	8.5	74
68	Notch1 acts via Foxc2 to promote definitive hematopoiesis via effects on hemogenic endothelium. Blood, 2015, 125, 1418-1426.	1.4	40
69	A prudent path forward for genomic engineering and germline gene modification. Science, 2015, 348, 36-38.	12.6	541
70	Adenosine signaling promotes hematopoietic stem and progenitor cell emergence. Journal of Experimental Medicine, 2015, 212, 649-663.	8.5	73
71	Stem cells and the evolving notion of cellular identity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140376.	4.0	55
72	Failure to replicate the STAP cell phenomenon. Nature, 2015, 525, E6-E9.	27.8	41

#	Article	IF	CITATIONS
73	Hallmarks of pluripotency. Nature, 2015, 525, 469-478.	27.8	338
74	Transplantation of Macaca cynomolgus iPS-derived hematopoietic cells in NSG immunodeficient mice. Haematologica, 2015, 100, e428-e431.	3.5	12
75	Systematic Identification of Factors for Provirus Silencing in Embryonic Stem Cells. Cell, 2015, 163, 230-245.	28.9	162
76	A comparison of non-integrating reprogramming methods. Nature Biotechnology, 2015, 33, 58-63.	17.5	424
77	Precise let-7 expression levels balance organ regeneration against tumor suppression. ELife, 2015, 4, e09431.	6.0	53
78	Biomechanical forces promote blood development through prostaglandin E ₂ and the cAMP–PKA signaling axis. Journal of General Physiology, 2015, 145, 1455OIA20.	1.9	0
79	Flow-induced protein kinase A–CREB pathway acts via BMP signaling to promote HSC emergence. Journal of Cell Biology, 2015, 209, 2092OIA67.	5.2	Ο
80	Biomechanical forces promote blood development through prostaglandin E2and the cAMP–PKA signaling axis. Journal of Cell Biology, 2015, 209, 2092OIA69.	5.2	0
81	Adenosine signaling promotes hematopoietic stem and progenitor cell emergence. Journal of Cell Biology, 2015, 209, 2092OIA68.	5.2	Ο
82	Musashi-2 controls cell fate, lineage bias, and TGF-β signaling in HSCs. Journal of Experimental Medicine, 2014, 211, 71-87.	8.5	136
83	Hematopoietic Stem Cells. , 2014, , 219-226.		Ο
84	Defining cellular identity through network biology. Cell Cycle, 2014, 13, 3313-3314.	2.6	6
85	Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature, 2014, 516, 56-61.	27.8	343
86	Functional Evaluation of ES–Somatic Cell Hybrids <i>In Vitro</i> and <i>In Vivo</i> . Cellular Reprogramming, 2014, 16, 167-174.	0.9	1
87	The Epithelial-Mesenchymal Transition Factor SNAIL Paradoxically Enhances Reprogramming. Stem Cell Reports, 2014, 3, 691-698.	4.8	75
88	Alternative Splicing of MBD2 Supports Self-Renewal in Human Pluripotent Stem Cells. Cell Stem Cell, 2014, 15, 92-101.	11.1	93
89	A nontranscriptional role for Oct4 in the regulation of mitotic entry. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15768-15773.	7.1	35
90	Deriving blood stem cells from pluripotent stem cells for research and therapy. Best Practice and Research in Clinical Haematology, 2014, 27, 293-297.	1.7	5

#	Article	IF	CITATIONS
91	Lin28b Is Sufficient to Drive Liver Cancer and Necessary for Its Maintenance in Murine Models. Cancer Cell, 2014, 26, 248-261.	16.8	176
92	CellNet: Network Biology Applied to Stem Cell Engineering. Cell, 2014, 158, 903-915.	28.9	490
93	Dissecting Engineered Cell Types and Enhancing Cell Fate Conversion via CellNet. Cell, 2014, 158, 889-902.	28.9	238
94	Use of differentiated pluripotent stem cells in replacement therapy for treating disease. Science, 2014, 345, 1247391.	12.6	243
95	Effect of Developmental Stage of HSC and Recipient on Transplant Outcomes. Developmental Cell, 2014, 29, 621-628.	7.0	53
96	Lin28 sustains early renal progenitors and induces Wilms tumor. Genes and Development, 2014, 28, 971-982.	5.9	149
97	A new route to human embryonic stem cells. Nature Medicine, 2013, 19, 820-821.	30.7	6
98	Regulation of stem cell therapies under attack in Europe: for whom the bell tolls. EMBO Journal, 2013, 32, 1489-1495.	7.8	79
99	Induction of Multipotential Hematopoietic Progenitors from Human Pluripotent Stem Cells via Respecification of Lineage-Restricted Precursors. Cell Stem Cell, 2013, 13, 459-470.	11.1	241
100	Reprogramming in situ. Nature, 2013, 502, 309-310.	27.8	11
101	Notch-HES1 signaling axis controls hemato-endothelial fate decisions of human embryonic and induced pluripotent stem cells. Blood, 2013, 122, 1162-1173.	1.4	50
102	Lin28 Enhances Tissue Repair by Reprogramming Cellular Metabolism. Cell, 2013, 155, 778-792.	28.9	322
103	A Stem Cell Perspective on Cellular Engineering. Science, 2013, 342, 700-702.	12.6	27
104	Human endogenous retrovirus K (HML-2) RNA and protein expression is a marker for human embryonic and induced pluripotent stem cells. Retrovirology, 2013, 10, 115.	2.0	82
105	Reprogrammed Cells for Disease Modeling and Regenerative Medicine. Annual Review of Medicine, 2013, 64, 277-290.	12.2	124
106	Signaling axis involving Hedgehog, Notch, and Scl promotes the embryonic endothelial-to-hematopoietic transition. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E141-E150.	7.1	58
107	Hematopoietic defects and iPSC disease modeling: Lessons learned. Immunology Letters, 2013, 155, 18-20.	2.5	5
			-

#	Article	IF	CITATIONS
109	Pluripotent Stem Cell Models of Shwachman-Diamond Syndrome Reveal a Common Mechanism for Pancreatic and Hematopoietic Dysfunction. Cell Stem Cell, 2013, 12, 727-736.	11.1	66
110	Lin28: Primal Regulator of Growth and Metabolism in Stem Cells. Cell Stem Cell, 2013, 12, 395-406.	11.1	415
111	Stem cell metabolism in tissue development and aging. Development (Cambridge), 2013, 140, 2535-2547.	2.5	477
112	A blueprint for engineering cell fate: current technologies to reprogram cell identity. Cell Research, 2013, 23, 33-48.	12.0	108
113	Fetal Deficiency of Lin28 Programs Life-Long Aberrations in Growth and Glucose Metabolism. Stem Cells, 2013, 31, 1563-1573.	3.2	112
114	Origins and implications of pluripotent stem cell variability and heterogeneity. Nature Reviews Molecular Cell Biology, 2013, 14, 357-368.	37.0	283
115	Induced Pluripotent Stem Cells with a Mitochondrial DNA Deletion. Stem Cells, 2013, 31, 1287-1297.	3.2	92
116	Influence of Threonine Metabolism on <i>S</i> -Adenosylmethionine and Histone Methylation. Science, 2013, 339, 222-226.	12.6	555
117	Comment on "Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells― Science Translational Medicine, 2013, 5, 188le2.	12.4	7
118	Deciphering the rules of ceRNA networks. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7112-7113.	7.1	52
119	Proteolytic autodigestion. Cell Cycle, 2013, 12, 3457-3458.	2.6	1
120	<i>Lin28a</i> Regulates Germ Cell Pool Size and Fertility. Stem Cells, 2013, 31, 1001-1009.	3.2	47
121	Therapeutic Potential of Human Induced Pluripotent Stem Cells in Experimental Stroke. Cell Transplantation, 2013, 22, 1427-1440.	2.5	69
122	Zcchc11 Uridylates Mature miRNAs to Enhance Neonatal IGF-1 Expression, Growth, and Survival. PLoS Genetics, 2012, 8, e1003105.	3.5	49
123	Pluripotent Stem Cells in Research and Treatment of Hemoglobinopathies. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a011841-a011841.	6.2	11
124	Altered hematopoiesis in trisomy 21 as revealed through in vitro differentiation of isogenic human pluripotent cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17567-17572.	7.1	129
125	Caudal genes in blood development and leukemia. Annals of the New York Academy of Sciences, 2012, 1266, 47-54.	3.8	14
126	Metabolic Regulation in Pluripotent Stem Cells during Reprogramming and Self-Renewal. Cell Stem Cell, 2012, 11, 589-595.	11.1	397

#	Article	IF	CITATIONS
127	Cellular Alchemy and the Golden Age of Reprogramming. Cell, 2012, 151, 1151-1154.	28.9	19
128	Functional vascular smooth muscle cells derived from human induced pluripotent stem cells via mesenchymal stem cell intermediates. Cardiovascular Research, 2012, 96, 391-400.	3.8	77
129	Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature, 2012, 491, 769-773.	27.8	288
130	The Promise and Perils of Stem Cell Therapeutics. Cell Stem Cell, 2012, 10, 740-749.	11.1	223
131	Quantitative proteomic analysis of induced pluripotent stem cells derived from a human Huntington's disease patient. Biochemical Journal, 2012, 446, 359-371.	3.7	104
132	Reprogramming Cellular Identity for Regenerative Medicine. Cell, 2012, 148, 1110-1122.	28.9	174
133	Accessing na $ ilde{A}$ ve human pluripotency. Current Opinion in Genetics and Development, 2012, 22, 272-282.	3.3	92
134	Neuronal Properties, In Vivo Effects, and Pathology of a Huntington's Disease Patient-Derived Induced Pluripotent Stem Cells. Stem Cells, 2012, 30, 2054-2062.	3.2	167
135	Euchromatin islands in large heterochromatin domains are enriched for CTCF binding and differentially DNA-methylated regions. BMC Genomics, 2012, 13, 566.	2.8	40
136	New lessons learned from disease modeling with induced pluripotent stem cells. Current Opinion in Genetics and Development, 2012, 22, 500-508.	3.3	81
137	The Transcriptional Landscape of Hematopoietic Stem Cell Ontogeny. Cell Stem Cell, 2012, 11, 701-714.	11.1	155
138	Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5803-5808.	7.1	308
139	Polycomb Repressive Complex 2 Regulates Normal Development of the Mouse Heart. Circulation Research, 2012, 110, 406-415.	4.5	188
140	Chromatin-modifying enzymes as modulators of reprogramming. Nature, 2012, 483, 598-602.	27.8	583
141	Overcoming reprogramming resistance of Fanconi anemia cells. Blood, 2012, 119, 5449-5457.	1.4	133
142	Stem cells assessed. Nature Reviews Molecular Cell Biology, 2012, 13, 471-476.	37.0	31
143	The promise of induced pluripotent stem cells in research and therapy. Nature, 2012, 481, 295-305.	27.8	976
144	Derivation of human embryonic stem cells with NEMO deficiency. Stem Cell Research, 2012, 8, 410-415.	0.7	4

#	Article	IF	CITATIONS
145	Excision of a Viral Reprogramming Cassette by Delivery of Synthetic Cre mRNA. Current Protocols in Stem Cell Biology, 2012, 21, Unit4A.5.	3.0	17
146	Stage-specific signaling through TGFÎ ² family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development (Cambridge), 2011, 138, 861-871.	2.5	350
147	Triple genomes go far. Nature, 2011, 478, 40-41.	27.8	10
148	Induced pluripotent stem cells for modelling human diseases. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2274-2285.	4.0	70
149	Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nature Biotechnology, 2011, 29, 1132-1144.	17.5	509
150	Induced pluripotent stem cells: AÂnovel frontier in the study of human primary immunodeficiencies. Journal of Allergy and Clinical Immunology, 2011, 127, 1400-1407.e4.	2.9	37
151	Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nature Biotechnology, 2011, 29, 1117-1119.	17.5	547
152	Induced pluripotent stem cells — opportunities for disease modelling and drug discovery. Nature Reviews Drug Discovery, 2011, 10, 915-929.	46.4	417
153	Genomic Approaches to Deconstruct Pluripotency. Annual Review of Genomics and Human Genetics, 2011, 12, 165-185.	6.2	33
154	The Lin28/let-7 Axis Regulates Glucose Metabolism. Cell, 2011, 147, 81-94.	28.9	812
155	Lineage Regulators Direct BMP and Wnt Pathways to Cell-Specific Programs during Differentiation and Regeneration. Cell, 2011, 147, 577-589.	28.9	277
156	Interactions between Cdx genes and retinoic acid modulate early cardiogenesis. Developmental Biology, 2011, 354, 134-142.	2.0	48
157	Tet1 and Tet2 Regulate 5-Hydroxymethylcytosine Production and Cell Lineage Specification in Mouse Embryonic Stem Cells. Cell Stem Cell, 2011, 8, 200-213.	11.1	697
158	The Nomenclature System Should Be Sustainable, but Also Practical. Cell Stem Cell, 2011, 8, 606-607.	11.1	2
159	Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity. Nature Cell Biology, 2011, 13, 1214-1223.	10.3	246
160	Liveâ€Cell Immunofluorescence Staining of Human Pluripotent Stem Cells. Current Protocols in Stem Cell Biology, 2011, 19, Unit 1C.12.	3.0	12
161	Cellular Therapy for Fanconi Anemia: The Past, Present, and Future. Biology of Blood and Marrow Transplantation, 2011, 17, S109-S114.	2.0	24
162	Transplantation of Adult Mouse iPS Cell-Derived Photoreceptor Precursors Restores Retinal Structure and Function in Degenerative Mice. PLoS ONE, 2011, 6, e18992.	2.5	283

#	Article	IF	CITATIONS
163	Hematopoietic differentiation of induced pluripotent stem cells from patients with mucopolysaccharidosis type I (Hurler syndrome). Blood, 2011, 117, 839-847.	1.4	82
164	Investigating monogenic and complex diseases with pluripotent stem cells. Nature Reviews Genetics, 2011, 12, 266-275.	16.3	101
165	Somatic coding mutations in human induced pluripotent stem cells. Nature, 2011, 471, 63-67.	27.8	1,147
166	Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature, 2011, 473, 394-397.	27.8	738
167	Induced pluripotent stem cells for neural tissue engineering. Biomaterials, 2011, 32, 5023-5032.	11.4	214
168	Induced pluripotent stem cell models from Xâ€linked adrenoleukodystrophy patients. Annals of Neurology, 2011, 70, 402-409.	5.3	94
169	Telomere dynamics in dyskeratosis congenita: the long and the short of iPS. Cell Research, 2011, 21, 1157-1160.	12.0	19
170	Cell cycle adaptations of embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19252-19257.	7.1	85
171	Knockdown of Fanconi anemia genes in human embryonic stem cells reveals early developmental defects in the hematopoietic lineage. Blood, 2010, 115, 3453-3462.	1.4	76
172	Interaction of retinoic acid and scl controls primitive blood development. Blood, 2010, 116, 201-209.	1.4	34
173	Robust Enhancement of Neural Differentiation from Human ES and iPS Cells Regardless of their Innate Difference in Differentiation Propensity. Stem Cell Reviews and Reports, 2010, 6, 270-281.	5.6	196
174	Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology, 2010, 51, 329-335.	7.3	389
175	Autologous blood cell therapies from pluripotent stem cells. Blood Reviews, 2010, 24, 27-37.	5.7	61
176	AP24163 Inhibits the Gatekeeper Mutant of BCRâ€ABL and Suppresses <i>In vitro</i> Resistance. Chemical Biology and Drug Design, 2010, 75, 223-227.	3.2	19
177	Molecular basis of the first cell fate determination in mouse embryogenesis. Cell Research, 2010, 20, 982-993.	12.0	94
178	Targeting Bcr–Abl by combining allosteric with ATP-binding-site inhibitors. Nature, 2010, 463, 501-506.	27.8	525
179	Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature, 2010, 464, 292-296.	27.8	302
180	Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature, 2010, 467, 338-342.	27.8	554

#	Article	IF	CITATIONS
181	Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nature Genetics, 2010, 42, 1113-1117.	21.4	902
182	Musashi-2 regulates normal hematopoiesis and promotes aggressive myeloid leukemia. Nature Medicine, 2010, 16, 903-908.	30.7	338
183	Cdx4 is dispensable for murine adult hematopoietic stem cells but promotes MLL-AF9-mediated leukemogenesis. Haematologica, 2010, 95, 1642-1650.	3.5	14
184	From Hen House to Bedside: Tracing Hanafusa's Legacy from Avian Leukemia Viruses to SRC to ABL and Beyond. Genes and Cancer, 2010, 1, 1164-1169.	1.9	4
185	Lin28: A MicroRNA Regulator with a Macro Role. Cell, 2010, 140, 445-449.	28.9	372
186	Differential Modeling of Fragile X Syndrome by Human Embryonic Stem Cells and Induced Pluripotent Stem Cells. Cell Stem Cell, 2010, 6, 407-411.	11.1	380
187	Reprogramming of T Cells from Human Peripheral Blood. Cell Stem Cell, 2010, 7, 15-19.	11.1	288
188	Highly Efficient Reprogramming to Pluripotency and Directed Differentiation of Human Cells with Synthetic Modified mRNA. Cell Stem Cell, 2010, 7, 618-630.	11.1	2,368
189	MicroRNA Profiling Reveals Two Distinct p53-Related Human Pluripotent Stem Cell States. Cell Stem Cell, 2010, 7, 671-681.	11.1	98
190	Another Horse in the Meta-Stable State of Pluripotency. Cell Stem Cell, 2010, 7, 641-642.	11.1	5
191	Lin28a transgenic mice manifest size and puberty phenotypes identified in human genetic association studies. Nature Genetics, 2010, 42, 626-630.	21.4	282
192	Clump Passaging and Expansion of Human Embryonic and Induced Pluripotent Stem Cells on Mouse Embryonic Fibroblast Feeder Cells. Current Protocols in Stem Cell Biology, 2010, 14, Unit 1C.10.	3.0	18
193	Stem cells: roadmap to the clinic. Journal of Clinical Investigation, 2010, 120, 8-10.	8.2	65
194	Generation of induced pluripotent stem cells from human blood. Blood, 2009, 113, 5476-5479.	1.4	559
195	Upping the Ante: Recent Advances in Direct Reprogramming. Molecular Therapy, 2009, 17, 947-953.	8.2	63
196	Functional Evidence that the Self-Renewal Gene <i>NANOG</i> Regulates Human Tumor Development. Stem Cells, 2009, 27, 993-1005.	3.2	307
197	Cross-regulation of the Nanog and Cdx2 promoters. Cell Research, 2009, 19, 1052-1061.	12.0	97
198	Down's syndrome suppression of tumour growth and the role of the calcineurin inhibitor DSCR1. Nature, 2009, 459, 1126-1130.	27.8	341

#	Article	IF	CITATIONS
199	Biomechanical forces promote embryonic haematopoiesis. Nature, 2009, 459, 1131-1135.	27.8	455
200	A role for Lin28 in primordial germ-cell development and germ-cell malignancy. Nature, 2009, 460, 909-913.	27.8	354
201	Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nature Biotechnology, 2009, 27, 353-360.	17.5	458
202	Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nature Biotechnology, 2009, 27, 361-368.	17.5	985
203	Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nature Biotechnology, 2009, 27, 1033-1037.	17.5	445
204	Lin28 promotes transformation and is associated with advanced human malignancies. Nature Genetics, 2009, 41, 843-848.	21.4	742
205	Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nature Genetics, 2009, 41, 1350-1353.	21.4	1,076
206	Hematopoietic Development from Human Induced Pluripotent Stem Cells. Annals of the New York Academy of Sciences, 2009, 1176, 219-227.	3.8	100
207	Disease Models from Pluripotent Stem Cells. Annals of the New York Academy of Sciences, 2009, 1176, 191-196.	3.8	21
208	9-(Arenethenyl)purines as Dual Src/Abl Kinase Inhibitors Targeting the Inactive Conformation: Design, Synthesis, and Biological Evaluation. Journal of Medicinal Chemistry, 2009, 52, 4743-4756.	6.4	41
209	Genetic Interaction of PGE2 and Wnt Signaling Regulates Developmental Specification of Stem Cells and Regeneration. Cell, 2009, 136, 1136-1147.	28.9	628
210	Broader Implications of Defining Standards for the Pluripotency of iPSCs. Cell Stem Cell, 2009, 4, 200-201.	11.1	111
211	Gene Targeting of a Disease-Related Gene in Human Induced Pluripotent Stem and Embryonic Stem Cells. Cell Stem Cell, 2009, 5, 97-110.	11.1	505
212	Konrad Hochedlinger: ISSCR Outstanding Young Investigator for 2009. Cell Stem Cell, 2009, 5, 154-155.	11.1	0
213	Human iPS Cell Derivation/Reprogramming. Current Protocols in Stem Cell Biology, 2009, 8, Unit 4A.1.	3.0	25
214	Application of induced pluripotent stem cells to hematologic disease. Cytotherapy, 2009, 11, 980-989.	0.7	23
215	ICSBP-mediated immune protection against BCR-ABL–induced leukemia requires the CCL6 and CCL9 chemokines. Blood, 2009, 113, 3813-3820.	1.4	27
216	Surface antigen phenotypes of hematopoietic stem cells from embryos and murine embryonic stem cells. Blood, 2009, 114, 268-278.	1.4	100

#	Article	IF	CITATIONS
217	Efficient Gene Knockdowns in Human Embryonic Stem Cells Using Lentiviral-Based RNAi. Methods in Molecular Biology, 2009, 482, 35-42.	0.9	5
218	Hematopoietic Stem Cells. , 2009, , 211-215.		1
219	A Robust Approach to Identifying Tissue-Specific Gene Expression Regulatory Variants Using Personalized Human Induced Pluripotent Stem Cells. PLoS Genetics, 2009, 5, e1000718.	3.5	55
220	microRNA Expression during Trophectoderm Specification. PLoS ONE, 2009, 4, e6143.	2.5	71
221	From fibroblasts to iPS cells: Induced pluripotency by defined factors. Journal of Cellular Biochemistry, 2008, 105, 949-955.	2.6	106
222	Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 2008, 451, 141-146.	27.8	2,670
223	Activation of tyrosine kinases by mutation of the gatekeeper threonine. Nature Structural and Molecular Biology, 2008, 15, 1109-1118.	8.2	366
224	Human embryonic stem cell derivation from poor-quality embryos. Nature Biotechnology, 2008, 26, 212-214.	17.5	100
225	Ras-MAPK signaling promotes trophectoderm formation from embryonic stem cells and mouse embryos. Nature Genetics, 2008, 40, 921-926.	21.4	134
226	Derivation and maintenance of human embryonic stem cells from poor-quality in vitro fertilization embryos. Nature Protocols, 2008, 3, 923-933.	12.0	49
227	Generation of human-induced pluripotent stem cells. Nature Protocols, 2008, 3, 1180-1186.	12.0	348
228	Mesodermal patterning activity of SCL. Experimental Hematology, 2008, 36, 1593-1603.	0.4	38
229	BMP and Wnt Specify Hematopoietic Fate by Activation of the Cdx-Hox Pathway. Cell Stem Cell, 2008, 2, 72-82.	11.1	192
230	The ISSCR in China. Cell Stem Cell, 2008, 2, 33.	11.1	1
231	Mapping the Road to the Clinical Translation of Stem Cells. Cell Stem Cell, 2008, 2, 139-140.	11.1	13
232	Global Forum Discusses Stem Cell Research Strategy. Cell Stem Cell, 2008, 2, 435-436.	11.1	2
233	New ISSCR Guidelines Underscore Major Principles for Responsible Translational Stem Cell Research. Cell Stem Cell, 2008, 3, 607-609.	11.1	218
234	Prospects for Stem Cell-Based Therapy. Cell, 2008, 132, 544-548.	28.9	278

#	Article	IF	CITATIONS
235	Disease-Specific Induced Pluripotent Stem Cells. Cell, 2008, 134, 877-886.	28.9	2,071
236	Selective Blockade of MicroRNA Processing by Lin28. Science, 2008, 320, 97-100.	12.6	1,316
237	Determinants of MicroRNA Processing Inhibition by the Developmentally Regulated RNA-binding Protein Lin28. Journal of Biological Chemistry, 2008, 283, 21310-21314.	3.4	301
238	<i>Cdx</i> gene deficiency compromises embryonic hematopoiesis in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7756-7761.	7.1	62
239	Molecular basis of pluripotency. Human Molecular Genetics, 2008, 17, R23-R27.	2.9	108
240	Modulation of murine embryonic stem cell–derived CD41+c-kit+ hematopoietic progenitors by ectopic expression of Cdx genes. Blood, 2008, 111, 4944-4953.	1.4	48
241	Isolation of Hematopoietic Stem Cells from Mouse Embryonic Stem Cells. Current Protocols in Stem Cell Biology, 2008, 4, Unit 1F.3.	3.0	16
242	Towards the Generation of Patient-Specific Pluripotent Stem Cells for Combined Gene and Cell Therapy of Hematologic Disorders. Hematology American Society of Hematology Education Program, 2007, 2007, 17-22.	2.5	17
243	Current prospects for the generation of patient-specific pluripotent cells from adult tissues. Regenerative Medicine, 2007, 2, 743-752.	1.7	2
244	Gametes from Embryonic Stem Cells: A Cup Half Empty or Half Full?. Science, 2007, 316, 409-410.	12.6	69
245	The May-Hegglin anomaly gene MYH9 is a negative regulator of platelet biogenesis modulated by the Rho-ROCK pathway. Blood, 2007, 110, 171-179.	1.4	154
246	Towards hematopoietic reconstitution from embryonic stem cells: a sanguine future. Current Opinion in Hematology, 2007, 14, 343-347.	2.5	18
247	Recombination Signatures Distinguish Embryonic Stem Cells Derived by Parthenogenesis and Somatic Cell Nuclear Transfer. Cell Stem Cell, 2007, 1, 346-352.	11.1	137
248	Teratoma Formation Assays with Human Embryonic Stem Cells: A Rationale for One Type of Human-Animal Chimera. Cell Stem Cell, 2007, 1, 253-258.	11.1	140
249	ETHICS: The ISSCR Guidelines for Human Embryonic Stem Cell Research. Science, 2007, 315, 603-604.	12.6	104
250	Histocompatible Embryonic Stem Cells by Parthenogenesis. Science, 2007, 315, 482-486.	12.6	217
251	Farnesyl transferase inhibitor resistance probed by target mutagenesis. Blood, 2007, 110, 2102-2109.	1.4	11
252	Phase 1 study of lonafarnib (SCH 66336) and imatinib mesylate in patients with chronic myeloid leukemia who have failed prior singleâ€agent therapy with imatinib. Cancer, 2007, 110, 1295-1302.	4.1	53

#	Article	IF	CITATIONS
253	Human embryonic stem cells flock together. Nature Biotechnology, 2007, 25, 748-750.	17.5	13
254	Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature, 2007, 447, 1007-1011.	27.8	1,037
255	The Cdx-Hox Pathway in Hematopoietic Stem Cell Formation from Embryonic Stem Cells. Annals of the New York Academy of Sciences, 2007, 1106, 197-208.	3.8	27
256	Differentiation Potential of Histocompatible Parthenogenetic Embryonic Stem Cells. Annals of the New York Academy of Sciences, 2007, 1106, 209-218.	3.8	16
257	Male Germ Cells. Methods in Enzymology, 2006, 418, 307-314.	1.0	3
258	Anticipating Clinical Resistance to Target-Directed Agents. Molecular Diagnosis and Therapy, 2006, 10, 67-76.	3.8	33
259	Scientific and clinical opportunities for modeling blood disorders with embryonic stem cells. Blood, 2006, 107, 2605-2612.	1.4	33
260	Acceleration of mesoderm development and expansion of hematopoietic progenitors in differentiating ES cells by the mouse Mix-like homeodomain transcription factor. Blood, 2006, 107, 3122-3130.	1.4	39
261	In vitro generation of germ cells from murine embryonic stem cells. Nature Protocols, 2006, 1, 2026-2036.	12.0	82
262	Transgene Expression and RNA Interference in Embryonic Stem Cells. Methods in Enzymology, 2006, 420, 49-64.	1.0	23
263	Activity of dual SRC-ABL inhibitors highlights the role of BCR/ABL kinase dynamics in drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9244-9249.	7.1	104
264	Cdx4 dysregulates Hox gene expression and generates acute myeloid leukemia alone and in cooperation with Meis1a in a murine model. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16924-16929.	7.1	69
265	Inducible Transgene Expression in Mouse Stem Cells. , 2005, 105, 023-046.		31
266	The homeobox gene HEX regulates proliferation and differentiation of hemangioblasts and endothelial cells during ES cell differentiation. Blood, 2005, 105, 4590-4597.	1.4	61
267	Simplifying hESC culture. Blood, 2005, 105, 4550-4550.	1.4	0
268	Therapeutic potential of embryonic stem cells. Blood Reviews, 2005, 19, 321-331.	5.7	200
269	High-Efficiency RNA Interference in Human Embryonic Stem Cells. Stem Cells, 2005, 23, 299-305.	3.2	253
270	Customized human embryonic stem cells. Nature Biotechnology, 2005, 23, 826-828.	17.5	3

#	Article	IF	CITATIONS
271	Chronic myeloid leukaemia: an investigation into the role of Bcr-Abl-induced abnormalities in glucose transport regulation. Oncogene, 2005, 24, 3257-3267.	5.9	80
272	Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell, 2005, 7, 129-141.	16.8	1,387
273	Patterning definitive hematopoietic stem cells from embryonic stem cells. Experimental Hematology, 2005, 33, 971-979.	0.4	23
274	Novel Role for PDEF in Epithelial Cell Migration and Invasion. Cancer Research, 2005, 65, 11572-11580.	0.9	79
275	Embryonic stem cell-derived hematopoietic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 19081-19086.	7.1	193
276	Bayesian analysis of signaling networks governing embryonic stem cell fate decisions. Bioinformatics, 2005, 21, 741-753.	4.1	113
277	Multivariate proteomic analysis of murine embryonic stem cell self-renewal versus differentiation signaling. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2900-2905.	7.1	103
278	Nuclear transplantation, embryonic stem cells and the potential for cell therapy. The Hematology Journal, 2004, 5, S114-S117.	1.4	68
279	Genetic complementation of cytokine signaling identifies central role of kinases in hematopoietic cell proliferation. Oncogene, 2004, 23, 1214-1220.	5.9	12
280	Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature, 2004, 427, 148-154.	27.8	810
281	In vitro gametogenesis from embryonic stem cells. Current Opinion in Cell Biology, 2004, 16, 688-692.	5.4	21
282	LIF/STAT3 Signaling Fails to Maintain Self-Renewal of Human Embryonic Stem Cells. Stem Cells, 2004, 22, 770-778.	3.2	427
283	Chronic Myeloid Leukemia:. Cell, 2004, 119, 314-316.	28.9	33
284	Origins of Mammalian Hematopoiesis: In Vivo Paradigms and In Vitro Models. Current Topics in Developmental Biology, 2004, 60, 127-196.	2.2	55
285	Mechanisms and implications of imatinib resistance mutations in BCR-ABL. Current Opinion in Hematology, 2004, 11, 35-43.	2.5	170
286	Hematopoietic Stem Cells. , 2004, , 279-283.		0
287	A screen to identify drug resistant variants to target-directed anti-cancer agents. Biological Procedures Online, 2003, 5, 204-210.	2.9	21
288	A Role for Thrombopoietin in Hemangioblast Development. Stem Cells, 2003, 21, 272-280.	3.2	43

#	Article	IF	CITATIONS
289	cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature, 2003, 425, 300-306.	27.8	227
290	From Embryos to Embryoid Bodies. Annals of the New York Academy of Sciences, 2003, 996, 122-131.	3.8	60
291	Mechanisms of Autoinhibition and STI-571/Imatinib Resistance Revealed by Mutagenesis of BCR-ABL. Cell, 2003, 112, 831-843.	28.9	588
292	Towards combination target-directed chemotherapy for chronic myeloid leukemia: Role of farnesyl transferase inhibitors. Seminars in Hematology, 2003, 40, 11-14.	3.4	23
293	Enhanced hematopoietic differentiation of embryonic stem cells conditionally expressing Stat5. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11904-11910.	7.1	72
294	Gleevec Resistance: Lessons for Target-Directed Drug Development. Cell Cycle, 2003, 2, 189-190.	2.6	14
295	Realistic Prospects for Stem Cell Therapeutics. Hematology American Society of Hematology Education Program, 2003, 2003, 398-418.	2.5	69
296	Development of Hematopoietic Repopulating Cells from Embryonic Stem Cells. Methods in Enzymology, 2003, 365, 114-129.	1.0	11
297	Hematopoiesis from embryonic stem cells: lessons from and for ontogeny. Experimental Hematology, 2003, 31, 994-1006.	0.4	37
298	Towards combination target-directed chemotherapy for chronic myeloid leukemia: Role of farnesyl transferase inhibitors. Seminars in Hematology, 2003, 40, 11-14.	3.4	4
299	A senescence rescue screen identifies BCL6 as an inhibitor of anti-proliferative p19ARF-p53 signaling. Genes and Development, 2002, 16, 681-686.	5.9	132
300	Novel retroviral vectors to facilitate expression screens in mammalian cells. Nucleic Acids Research, 2002, 30, 142e-142.	14.5	32
301	Overcoming STI571 resistance with the farnesyl transferase inhibitor SCH66336. Blood, 2002, 100, 1068-1071.	1.4	235
302	HoxB4 Confers Definitive Lymphoid-Myeloid Engraftment Potential on Embryonic Stem Cell and Yolk Sac Hematopoietic Progenitors. Cell, 2002, 109, 29-37.	28.9	726
303	Correction of a Genetic Defect by Nuclear Transplantation and Combined Cell and Gene Therapy. Cell, 2002, 109, 17-27.	28.9	572
304	Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems. Biotechnology and Bioengineering, 2002, 78, 442-453.	3.3	321
305	A functional screen identifies hDRIL1 as an oncogene that rescues RAS-induced senescence. Nature Cell Biology, 2002, 4, 148-153.	10.3	98
306	Expression of interferon consensus sequence binding protein induces potent immunity against BCR/ABL-induced leukemia. Blood, 2001, 97, 3491-3497.	1.4	46

#	Article	IF	CITATIONS
307	Treatment of Bcr/Abl-positive acute lymphoblastic leukemia in P190 transgenic mice with the farnesyl transferase inhibitor SCH66336. Blood, 2001, 97, 1399-1403.	1.4	115
308	Activity of the farnesyl protein transferase inhibitor SCH66336 against BCR/ABL-induced murine leukemia and primary cells from patients with chronic myeloid leukemia. Blood, 2001, 97, 1404-1412.	1.4	170
309	Autocrine and paracrine effects of an ES-cell derived, BCR/ABL-transformed hematopoietic cell line that induces leukemia in mice. Oncogene, 2001, 20, 2636-2646.	5.9	43
310	Cooperative and redundant effects of STAT5 and Ras signaling in BCR/ABL transformed hematopoietic cells. Oncogene, 2001, 20, 5826-5835.	5.9	77
311	Single Nucleotide Polymorphisms in Multiple Novel Thrombospondin Genes May Be Associated With Familial Premature Myocardial Infarction. Circulation, 2001, 104, 2641-2644.	1.6	272
312	Clonal analysis of differentiating embryonic stem cells reveals a hematopoietic progenitor with primitive erythroid and adult lymphoid-myeloid potential. Development (Cambridge), 2001, 128, 4597-4604.	2.5	92
313	Mining for SNPs: putting the common variants-common disease hypothesis to the test. Pharmacogenomics, 2000, 1, 27-37.	1.3	32
314	A genetic screen to identify genes that rescue the slow growth phenotype of c-myc null fibroblasts. Oncogene, 2000, 19, 3330-3334.	5.9	60
315	Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19ARF) and is amplified in a subset of human breast cancers. Nature Genetics, 2000, 26, 291-299.	21.4	335
316	The P190, P210, and P230 Forms of the BCR/ABL Oncogene Induce a Similar Chronic Myeloid Leukemia–like Syndrome in Mice but Have Different Lymphoid Leukemogenic Activity. Journal of Experimental Medicine, 1999, 189, 1399-1412.	8.5	460
317	Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature Genetics, 1999, 22, 231-238.	21.4	1,746
318	Secondary Mutation Maintains the Transformed State in BaF3 Cells With Inducible BCR/ABL Expression. Blood, 1998, 91, 3927-3934.	1.4	103
319	Secondary Mutation Maintains the Transformed State in BaF3 Cells With Inducible BCR/ABL Expression. Blood, 1998, 91, 3927-3934.	1.4	91
320	Rationalizing Autotransplant Strategies for Chronic Myeloid Leukemia. Leukemia and Lymphoma, 1996, 21, 353-358.	1.3	3
321	Animal Models of BCR/ABL-Induced Leukemias. Leukemia and Lymphoma, 1993, 11, 57-60.	1.3	19
322	Implicating the bcr/abl Gene in the Pathogenesis of Philadelphia Chromosome-Positive Human Leukemia. Advances in Cancer Research, 1991, 57, 151-184.	5.0	87
323	Alternative 5′ exons in c-abl mRNA. Cell, 1986, 44, 577-586.	28.9	286
324	Part D: Directed Differentiation of Human Embryonic Stem Cells into Hematopoeiticin vivo Repopulating Cells. , 0, , 273-285.		0

#	Article	IF	CITATIONS
325	Haematopoietic progenitor and lymphoid differentiation from human pluripotent stem cells. Protocol Exchange, 0, , .	0.3	1