George Q Daley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11899367/publications.pdf

Version: 2024-02-01

		1301	983
325	59,990	109	237
papers	citations	h-index	g-index
336	336	336	56868
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 2008, 451, 141-146.	27.8	2,670
2	Highly Efficient Reprogramming to Pluripotency and Directed Differentiation of Human Cells with Synthetic Modified mRNA. Cell Stem Cell, 2010, 7, 618-630.	11.1	2,368
3	Disease-Specific Induced Pluripotent Stem Cells. Cell, 2008, 134, 877-886.	28.9	2,071
4	Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature Genetics, 1999, 22, 231-238.	21.4	1,746
5	Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell, 2005, 7, 129-141.	16.8	1,387
6	Selective Blockade of MicroRNA Processing by Lin28. Science, 2008, 320, 97-100.	12.6	1,316
7	Somatic coding mutations in human induced pluripotent stem cells. Nature, 2011, 471, 63-67.	27.8	1,147
8	Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nature Genetics, 2009, 41, 1350-1353.	21.4	1,076
9	Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature, 2007, 447, 1007-1011.	27.8	1,037
10	Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nature Biotechnology, 2009, 27, 361-368.	17.5	985
11	The promise of induced pluripotent stem cells in research and therapy. Nature, 2012, 481, 295-305.	27.8	976
12	Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nature Genetics, 2010, 42, 1113-1117.	21.4	902
13	The Lin28/let-7 Axis Regulates Glucose Metabolism. Cell, 2011, 147, 81-94.	28.9	812
14	Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature, 2004, 427, 148-154.	27.8	810
15	Lin28 promotes transformation and is associated with advanced human malignancies. Nature Genetics, 2009, 41, 843-848.	21.4	742
16	Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature, 2011, 473, 394-397.	27.8	738
17	HoxB4 Confers Definitive Lymphoid-Myeloid Engraftment Potential on Embryonic Stem Cell and Yolk Sac Hematopoietic Progenitors. Cell, 2002, 109, 29-37.	28.9	726
18	Tet1 and Tet2 Regulate 5-Hydroxymethylcytosine Production and Cell Lineage Specification in Mouse Embryonic Stem Cells. Cell Stem Cell, 2011, 8, 200-213.	11.1	697

#	Article	lF	Citations
19	Genetic Interaction of PGE2 and Wnt Signaling Regulates Developmental Specification of Stem Cells and Regeneration. Cell, 2009, 136, 1136-1147.	28.9	628
20	Mechanisms of Autoinhibition and STI-571/Imatinib Resistance Revealed by Mutagenesis of BCR-ABL. Cell, 2003, 112, 831-843.	28.9	588
21	Chromatin-modifying enzymes as modulators of reprogramming. Nature, 2012, 483, 598-602.	27.8	583
22	Correction of a Genetic Defect by Nuclear Transplantation and Combined Cell and Gene Therapy. Cell, 2002, 109, 17-27.	28.9	572
23	Generation of induced pluripotent stem cells from human blood. Blood, 2009, 113, 5476-5479.	1.4	559
24	Influence of Threonine Metabolism on <i>S</i> -Adenosylmethionine and Histone Methylation. Science, 2013, 339, 222-226.	12.6	555
25	Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature, 2010, 467, 338-342.	27.8	554
26	Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nature Biotechnology, 2011, 29, 1117-1119.	17. 5	547
27	A prudent path forward for genomic engineering and germline gene modification. Science, 2015, 348, 36-38.	12.6	541
28	Targeting Bcr–Abl by combining allosteric with ATP-binding-site inhibitors. Nature, 2010, 463, 501-506.	27.8	525
29	Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nature Biotechnology, 2011, 29, 1132-1144.	17.5	509
30	Gene Targeting of a Disease-Related Gene in Human Induced Pluripotent Stem and Embryonic Stem Cells. Cell Stem Cell, 2009, 5, 97-110.	11.1	505
31	CellNet: Network Biology Applied to Stem Cell Engineering. Cell, 2014, 158, 903-915.	28.9	490
32	Stem cell metabolism in tissue development and aging. Development (Cambridge), 2013, 140, 2535-2547.	2.5	477
33	The P190, P210, and P230 Forms of the BCR/ABL Oncogene Induce a Similar Chronic Myeloid Leukemia–like Syndrome in Mice but Have Different Lymphoid Leukemogenic Activity. Journal of Experimental Medicine, 1999, 189, 1399-1412.	8.5	460
34	Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nature Biotechnology, 2009, 27, 353-360.	17.5	458
35	Biomechanical forces promote embryonic haematopoiesis. Nature, 2009, 459, 1131-1135.	27.8	455
36	Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nature Biotechnology, 2009, 27, 1033-1037.	17.5	445

#	Article	IF	CITATIONS
37	LIF/STAT3 Signaling Fails to Maintain Self-Renewal of Human Embryonic Stem Cells. Stem Cells, 2004, 22, 770-778.	3.2	427
38	A comparison of non-integrating reprogramming methods. Nature Biotechnology, 2015, 33, 58-63.	17.5	424
39	Induced pluripotent stem cells — opportunities for disease modelling and drug discovery. Nature Reviews Drug Discovery, 2011, 10, 915-929.	46.4	417
40	Lin28: Primal Regulator of Growth and Metabolism in Stem Cells. Cell Stem Cell, 2013, 12, 395-406.	11.1	415
41	Induced pluripotent stem cells in disease modelling and drug discovery. Nature Reviews Genetics, 2019, 20, 377-388.	16.3	411
42	Metabolic Regulation in Pluripotent Stem Cells during Reprogramming and Self-Renewal. Cell Stem Cell, 2012, 11, 589-595.	11.1	397
43	Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature, 2017, 545, 432-438.	27.8	395
44	Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology, 2010, 51, 329-335.	7.3	389
45	Differential Modeling of Fragile X Syndrome by Human Embryonic Stem Cells and Induced Pluripotent Stem Cells. Cell Stem Cell, 2010, 6, 407-411.	11.1	380
46	Lin28: A MicroRNA Regulator with a Macro Role. Cell, 2010, 140, 445-449.	28.9	372
47	Activation of tyrosine kinases by mutation of the gatekeeper threonine. Nature Structural and Molecular Biology, 2008, 15, 1109-1118.	8.2	366
48	A role for Lin28 in primordial germ-cell development and germ-cell malignancy. Nature, 2009, 460, 909-913.	27.8	354
49	Stage-specific signaling through TGF \hat{l}^2 family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development (Cambridge), 2011, 138, 861-871.	2.5	350
50	Generation of human-induced pluripotent stem cells. Nature Protocols, 2008, 3, 1180-1186.	12.0	348
51	Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature, 2014, 516, 56-61.	27.8	343
52	Down's syndrome suppression of tumour growth and the role of the calcineurin inhibitor DSCR1. Nature, 2009, 459, 1126-1130.	27.8	341
53	Musashi-2 regulates normal hematopoiesis and promotes aggressive myeloid leukemia. Nature Medicine, 2010, 16, 903-908.	30.7	338
54	Hallmarks of pluripotency. Nature, 2015, 525, 469-478.	27.8	338

#	Article	IF	CITATIONS
55	Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19ARF) and is amplified in a subset of human breast cancers. Nature Genetics, 2000, 26, 291-299.	21.4	335
56	Lin28 Enhances Tissue Repair by Reprogramming Cellular Metabolism. Cell, 2013, 155, 778-792.	28.9	322
57	Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems. Biotechnology and Bioengineering, 2002, 78, 442-453.	3.3	321
58	Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5803-5808.	7.1	308
59	Functional Evidence that the Self-Renewal Gene <i>NANOG</i> Regulates Human Tumor Development. Stem Cells, 2009, 27, 993-1005.	3.2	307
60	Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature, 2010, 464, 292-296.	27.8	302
61	Determinants of MicroRNA Processing Inhibition by the Developmentally Regulated RNA-binding Protein Lin28. Journal of Biological Chemistry, 2008, 283, 21310-21314.	3.4	301
62	Reprogramming of T Cells from Human Peripheral Blood. Cell Stem Cell, 2010, 7, 15-19.	11.1	288
63	Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature, 2012, 491, 769-773.	27.8	288
64	Alternative 5′ exons in c-abl mRNA. Cell, 1986, 44, 577-586.	28.9	286
65	Transplantation of Adult Mouse iPS Cell-Derived Photoreceptor Precursors Restores Retinal Structure and Function in Degenerative Mice. PLoS ONE, 2011, 6, e18992.	2.5	283
66	Origins and implications of pluripotent stem cell variability and heterogeneity. Nature Reviews Molecular Cell Biology, 2013, 14, 357-368.	37.0	283
67	Lin28a transgenic mice manifest size and puberty phenotypes identified in human genetic association studies. Nature Genetics, 2010, 42, 626-630.	21.4	282
68	Prospects for Stem Cell-Based Therapy. Cell, 2008, 132, 544-548.	28.9	278
69	LIN28 Regulates Stem Cell Metabolism and Conversion to Primed Pluripotency. Cell Stem Cell, 2016, 19, 66-80.	11.1	278
70	Lineage Regulators Direct BMP and Wnt Pathways to Cell-Specific Programs during Differentiation and Regeneration. Cell, 2011, 147, 577-589.	28.9	277
71	Single Nucleotide Polymorphisms in Multiple Novel Thrombospondin Genes May Be Associated With Familial Premature Myocardial Infarction. Circulation, 2001, 104, 2641-2644.	1.6	272
72	High-Efficiency RNA Interference in Human Embryonic Stem Cells. Stem Cells, 2005, 23, 299-305.	3.2	253

#	Article	IF	CITATIONS
73	Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity. Nature Cell Biology, 2011, 13, 1214-1223.	10.3	246
74	Use of differentiated pluripotent stem cells in replacement therapy for treating disease. Science, 2014, 345, 1247391.	12.6	243
75	Induction of Multipotential Hematopoietic Progenitors from Human Pluripotent Stem Cells via Respecification of Lineage-Restricted Precursors. Cell Stem Cell, 2013, 13, 459-470.	11.1	241
76	Dissecting Engineered Cell Types and Enhancing Cell Fate Conversion via CellNet. Cell, 2014, 158, 889-902.	28.9	238
77	Overcoming STI571 resistance with the farnesyl transferase inhibitor SCH66336. Blood, 2002, 100, 1068-1071.	1.4	235
78	cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature, 2003, 425, 300-306.	27.8	227
79	The Promise and Perils of Stem Cell Therapeutics. Cell Stem Cell, 2012, 10, 740-749.	11.1	223
80	New ISSCR Guidelines Underscore Major Principles for Responsible Translational Stem Cell Research. Cell Stem Cell, 2008, 3, 607-609.	11.1	218
81	Histocompatible Embryonic Stem Cells by Parthenogenesis. Science, 2007, 315, 482-486.	12.6	217
82	Induced pluripotent stem cells for neural tissue engineering. Biomaterials, 2011, 32, 5023-5032.	11.4	214
83	Integrative Analyses of Human Reprogramming Reveal Dynamic Nature of Induced Pluripotency. Cell, 2015, 162, 412-424.	28.9	206
84	Therapeutic potential of embryonic stem cells. Blood Reviews, 2005, 19, 321-331.	5.7	200
85	Robust Enhancement of Neural Differentiation from Human ES and iPS Cells Regardless of their Innate Difference in Differentiation Propensity. Stem Cell Reviews and Reports, 2010, 6, 270-281.	5 . 6	196
86	Embryonic stem cell-derived hematopoietic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 19081-19086.	7.1	193
87	BMP and Wnt Specify Hematopoietic Fate by Activation of the Cdx-Hox Pathway. Cell Stem Cell, 2008, 2, 72-82.	11.1	192
88	Polycomb Repressive Complex 2 Regulates Normal Development of the Mouse Heart. Circulation Research, 2012, 110, 406-415.	4.5	188
89	Lin28b Is Sufficient to Drive Liver Cancer and Necessary for Its Maintenance in Murine Models. Cancer Cell, 2014, 26, 248-261.	16.8	176
90	Reprogramming Cellular Identity for Regenerative Medicine. Cell, 2012, 148, 1110-1122.	28.9	174

#	Article	IF	Citations
91	Setting Global Standards for Stem Cell Research and Clinical Translation: TheÂ2016 ISSCR Guidelines. Stem Cell Reports, 2016, 6, 787-797.	4.8	172
92	Activity of the farnesyl protein transferase inhibitor SCH66336 against BCR/ABL-induced murine leukemia and primary cells from patients with chronic myeloid leukemia. Blood, 2001, 97, 1404-1412.	1.4	170
93	Mechanisms and implications of imatinib resistance mutations in BCR-ABL. Current Opinion in Hematology, 2004, 11, 35-43.	2.5	170
94	Neuronal Properties, In Vivo Effects, and Pathology of a Huntington's Disease Patient-Derived Induced Pluripotent Stem Cells. Stem Cells, 2012, 30, 2054-2062.	3.2	167
95	Systematic Identification of Factors for Provirus Silencing in Embryonic Stem Cells. Cell, 2015, 163, 230-245.	28.9	162
96	Multiple mechanisms disrupt the let-7 microRNA family in neuroblastoma. Nature, 2016, 535, 246-251.	27.8	159
97	The Transcriptional Landscape of Hematopoietic Stem Cell Ontogeny. Cell Stem Cell, 2012, 11, 701-714.	11.1	155
98	The May-Hegglin anomaly gene MYH9 is a negative regulator of platelet biogenesis modulated by the Rho-ROCK pathway. Blood, 2007, 110, 171-179.	1.4	154
99	Stem Cells in the Treatment of Disease. New England Journal of Medicine, 2019, 380, 1748-1760.	27.0	152
100	Lin28 sustains early renal progenitors and induces Wilms tumor. Genes and Development, 2014, 28, 971-982.	5.9	149
101	Teratoma Formation Assays with Human Embryonic Stem Cells: A Rationale for One Type of Human-Animal Chimera. Cell Stem Cell, 2007, 1, 253-258.	11.1	140
102	Recombination Signatures Distinguish Embryonic Stem Cells Derived by Parthenogenesis and Somatic Cell Nuclear Transfer. Cell Stem Cell, 2007, 1, 346-352.	11.1	137
103	Musashi-2 controls cell fate, lineage bias, and TGF- \hat{l}^2 signaling in HSCs. Journal of Experimental Medicine, 2014, 211, 71-87.	8.5	136
104	Ras-MAPK signaling promotes trophectoderm formation from embryonic stem cells and mouse embryos. Nature Genetics, 2008, 40, 921-926.	21.4	134
105	ISSCR Guidelines for Stem Cell Research and Clinical Translation: The 2021 update. Stem Cell Reports, 2021, 16, 1398-1408.	4.8	134
106	Overcoming reprogramming resistance of Fanconi anemia cells. Blood, 2012, 119, 5449-5457.	1.4	133
107	A senescence rescue screen identifies BCL6 as an inhibitor of anti-proliferative p19ARF-p53 signaling. Genes and Development, 2002, 16, 681-686.	5.9	132
108	Altered hematopoiesis in trisomy 21 as revealed through in vitro differentiation of isogenic human pluripotent cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17567-17572.	7.1	129

#	Article	IF	CITATIONS
109	Reprogrammed Cells for Disease Modeling and Regenerative Medicine. Annual Review of Medicine, 2013, 64, 277-290.	12.2	124
110	Using CRISPR-Cas9 to Generate Gene-Corrected Autologous iPSCs for the Treatment of Inherited Retinal Degeneration. Molecular Therapy, 2017, 25, 1999-2013.	8.2	121
111	Treatment of Bcr/Abl-positive acute lymphoblastic leukemia in P190 transgenic mice with the farnesyl transferase inhibitor SCH66336. Blood, 2001, 97, 1399-1403.	1.4	115
112	Bayesian analysis of signaling networks governing embryonic stem cell fate decisions. Bioinformatics, 2005, 21, 741-753.	4.1	113
113	Fetal Deficiency of Lin28 Programs Life-Long Aberrations in Growth and Glucose Metabolism. Stem Cells, 2013, 31, 1563-1573.	3.2	112
114	Broader Implications of Defining Standards for the Pluripotency of iPSCs. Cell Stem Cell, 2009, 4, 200-201.	11.1	111
115	Confronting stem cell hype. Science, 2016, 352, 776-777.	12.6	109
116	Molecular basis of pluripotency. Human Molecular Genetics, 2008, 17, R23-R27.	2.9	108
117	A blueprint for engineering cell fate: current technologies to reprogram cell identity. Cell Research, 2013, 23, 33-48.	12.0	108
118	From fibroblasts to iPS cells: Induced pluripotency by defined factors. Journal of Cellular Biochemistry, 2008, 105, 949-955.	2.6	106
119	Activity of dual SRC-ABL inhibitors highlights the role of BCR/ABL kinase dynamics in drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9244-9249.	7.1	104
120	ETHICS: The ISSCR Guidelines for Human Embryonic Stem Cell Research. Science, 2007, 315, 603-604.	12.6	104
121	Quantitative proteomic analysis of induced pluripotent stem cells derived from a human Huntington's disease patient. Biochemical Journal, 2012, 446, 359-371.	3.7	104
122	Secondary Mutation Maintains the Transformed State in BaF3 Cells With Inducible BCR/ABL Expression. Blood, 1998, 91, 3927-3934.	1.4	103
123	Multivariate proteomic analysis of murine embryonic stem cell self-renewal versus differentiation signaling. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2900-2905.	7.1	103
124	Investigating monogenic and complex diseases with pluripotent stem cells. Nature Reviews Genetics, 2011, 12, 266-275.	16.3	101
125	Human embryonic stem cell derivation from poor-quality embryos. Nature Biotechnology, 2008, 26, 212-214.	17.5	100
126	Hematopoietic Development from Human Induced Pluripotent Stem Cells. Annals of the New York Academy of Sciences, 2009, 1176, 219-227.	3.8	100

#	Article	IF	Citations
127	Surface antigen phenotypes of hematopoietic stem cells from embryos and murine embryonic stem cells. Blood, 2009, 114, 268-278.	1.4	100
128	A functional screen identifies hDRIL1 as an oncogene that rescues RAS-induced senescence. Nature Cell Biology, 2002, 4, 148-153.	10.3	98
129	MicroRNA Profiling Reveals Two Distinct p53-Related Human Pluripotent Stem Cell States. Cell Stem Cell, 2010, 7, 671-681.	11.1	98
130	Cross-regulation of the Nanog and Cdx2 promoters. Cell Research, 2009, 19, 1052-1061.	12.0	97
131	Epoxyeicosatrienoic acids enhance embryonic haematopoiesis and adult marrow engraftment. Nature, 2015, 523, 468-471.	27.8	97
132	De novo generation of HSCs from somatic and pluripotent stem cell sources. Blood, 2015, 125, 2641-2648.	1.4	97
133	Developmental Vitamin D Availability Impacts Hematopoietic Stem Cell Production. Cell Reports, 2016, 17, 458-468.	6.4	97
134	Molecular basis of the first cell fate determination in mouse embryogenesis. Cell Research, 2010, 20, 982-993.	12.0	94
135	Induced pluripotent stem cell models from Xâ€linked adrenoleukodystrophy patients. Annals of Neurology, 2011, 70, 402-409.	5.3	94
136	Alternative Splicing of MBD2 Supports Self-Renewal in Human Pluripotent Stem Cells. Cell Stem Cell, 2014, 15, 92-101.	11.1	93
137	Accessing na \tilde{A}^- ve human pluripotency. Current Opinion in Genetics and Development, 2012, 22, 272-282.	3.3	92
138	Induced Pluripotent Stem Cells with a Mitochondrial DNA Deletion. Stem Cells, 2013, 31, 1287-1297.	3.2	92
139	LIN28 cooperates with WNT signaling to drive invasive intestinal and colorectal adenocarcinoma in mice and humans. Genes and Development, 2015, 29, 1074-1086.	5.9	92
140	Chronic myeloid leukemia: reminiscences and dreams. Haematologica, 2016, 101, 541-558.	3.5	92
141	Clonal analysis of differentiating embryonic stem cells reveals a hematopoietic progenitor with primitive erythroid and adult lymphoid-myeloid potential. Development (Cambridge), 2001, 128, 4597-4604.	2.5	92
142	NF-κB activation impairs somatic cell reprogramming in ageing. Nature Cell Biology, 2015, 17, 1004-1013.	10.3	91
143	Secondary Mutation Maintains the Transformed State in BaF3 Cells With Inducible BCR/ABL Expression. Blood, 1998, 91, 3927-3934.	1.4	91
144	Implicating the bcr/abl Gene in the Pathogenesis of Philadelphia Chromosome-Positive Human Leukemia. Advances in Cancer Research, 1991, 57, 151-184.	5.0	87

#	Article	IF	Citations
145	Drug discovery for Diamond-Blackfan anemia using reprogrammed hematopoietic progenitors. Science Translational Medicine, 2017, 9, .	12.4	87
146	Cell cycle adaptations of embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19252-19257.	7.1	85
147	In vitro generation of germ cells from murine embryonic stem cells. Nature Protocols, 2006, 1, 2026-2036.	12.0	82
148	Hematopoietic differentiation of induced pluripotent stem cells from patients with mucopolysaccharidosis type I (Hurler syndrome). Blood, 2011, 117, 839-847.	1.4	82
149	Human endogenous retrovirus K (HML-2) RNA and protein expression is a marker for human embryonic and induced pluripotent stem cells. Retrovirology, 2013, 10, 115.	2.0	82
150	New lessons learned from disease modeling with induced pluripotent stem cells. Current Opinion in Genetics and Development, 2012, 22, 500-508.	3.3	81
151	Small-Molecule Inhibitors Disrupt let-7 Oligouridylation and Release the Selective Blockade of let-7 Processing by LIN28. Cell Reports, 2018, 23, 3091-3101.	6.4	81
152	Chronic myeloid leukaemia: an investigation into the role of Bcr-Abl-induced abnormalities in glucose transport regulation. Oncogene, 2005, 24, 3257-3267.	5.9	80
153	Novel Role for PDEF in Epithelial Cell Migration and Invasion. Cancer Research, 2005, 65, 11572-11580.	0.9	79
154	Regulation of stem cell therapies under attack in Europe: for whom the bell tolls. EMBO Journal, 2013, 32, 1489-1495.	7.8	79
155	Engineering Hematopoietic Stem Cells: Lessons from Development. Cell Stem Cell, 2016, 18, 707-720.	11.1	79
156	Reconstruction of complex single-cell trajectories using CellRouter. Nature Communications, 2018, 9, 892.	12.8	78
157	Cooperative and redundant effects of STAT5 and Ras signaling in BCR/ABL transformed hematopoietic cells. Oncogene, 2001, 20, 5826-5835.	5.9	77
158	Functional vascular smooth muscle cells derived from human induced pluripotent stem cells via mesenchymal stem cell intermediates. Cardiovascular Research, 2012, 96, 391-400.	3.8	77
159	Knockdown of Fanconi anemia genes in human embryonic stem cells reveals early developmental defects in the hematopoietic lineage. Blood, 2010, 115, 3453-3462.	1.4	76
160	The Epithelial-Mesenchymal Transition Factor SNAIL Paradoxically Enhances Reprogramming. Stem Cell Reports, 2014, 3, 691-698.	4.8	75
161	Biomechanical forces promote blood development through prostaglandin E2 and the cAMP–PKA signaling axis. Journal of Experimental Medicine, 2015, 212, 665-680.	8.5	74
162	Adenosine signaling promotes hematopoietic stem and progenitor cell emergence. Journal of Experimental Medicine, 2015, 212, 649-663.	8.5	73

#	Article	IF	Citations
163	Enhanced hematopoietic differentiation of embryonic stem cells conditionally expressing Stat5. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11904-11910.	7.1	72
164	Metabolic Switches Linked to Pluripotency and Embryonic Stem Cell Differentiation. Cell Metabolism, 2015, 21, 349-350.	16.2	71
165	microRNA Expression during Trophectoderm Specification. PLoS ONE, 2009, 4, e6143.	2.5	71
166	Induced pluripotent stem cells for modelling human diseases. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2274-2285.	4.0	70
167	Regulation of embryonic haematopoietic multipotency by EZH1. Nature, 2018, 553, 506-510.	27.8	70
168	Realistic Prospects for Stem Cell Therapeutics. Hematology American Society of Hematology Education Program, 2003, 2003, 398-418.	2.5	69
169	Cdx4 dysregulates Hox gene expression and generates acute myeloid leukemia alone and in cooperation with Meis1a in a murine model. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16924-16929.	7.1	69
170	Gametes from Embryonic Stem Cells: A Cup Half Empty or Half Full?. Science, 2007, 316, 409-410.	12.6	69
171	Therapeutic Potential of Human Induced Pluripotent Stem Cells in Experimental Stroke. Cell Transplantation, 2013, 22, 1427-1440.	2.5	69
172	Nuclear transplantation, embryonic stem cells and the potential for cell therapy. The Hematology Journal, 2004, 5, S114-S117.	1.4	68
173	Progress towards generation of human haematopoietic stem cells. Nature Cell Biology, 2016, 18, 1111-1117.	10.3	68
174	Pluripotent Stem Cell Models of Shwachman-Diamond Syndrome Reveal a Common Mechanism for Pancreatic and Hematopoietic Dysfunction. Cell Stem Cell, 2013, 12, 727-736.	11.1	66
175	YAP Regulates Hematopoietic Stem Cell Formation in Response to the Biomechanical Forces of Blood Flow. Developmental Cell, 2020, 52, 446-460.e5.	7.0	65
176	Stem cells: roadmap to the clinic. Journal of Clinical Investigation, 2010, 120, 8-10.	8.2	65
177	Upping the Ante: Recent Advances in Direct Reprogramming. Molecular Therapy, 2009, 17, 947-953.	8.2	63
178	<i>Cdx</i> gene deficiency compromises embryonic hematopoiesis in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7756-7761.	7.1	62
179	Developmental regulation of myeloerythroid progenitor function by the <i>Lin28b</i> 倓 <i>let-7</i> 倓 <i>Hmga2</i> axis. Journal of Experimental Medicine, 2016, 213, 1497-1512.	8.5	62
180	The homeobox gene HEX regulates proliferation and differentiation of hemangioblasts and endothelial cells during ES cell differentiation. Blood, 2005, 105, 4590-4597.	1.4	61

#	Article	IF	Citations
181	Autologous blood cell therapies from pluripotent stem cells. Blood Reviews, 2010, 24, 27-37.	5.7	61
182	Comprehensive Mapping of Pluripotent Stem Cell Metabolism Using Dynamic Genome-Scale Network Modeling. Cell Reports, 2017, 21, 2965-2977.	6.4	61
183	A genetic screen to identify genes that rescue the slow growth phenotype of c-myc null fibroblasts. Oncogene, 2000, 19, 3330-3334.	5.9	60
184	From Embryos to Embryoid Bodies. Annals of the New York Academy of Sciences, 2003, 996, 122-131.	3.8	60
185	The Lin28/let-7 Pathway Regulates the Mammalian Caudal Body Axis Elongation Program. Developmental Cell, 2019, 48, 396-405.e3.	7. 0	60
186	LIN28 phosphorylation by MAPK/ERK couples signalling to the post-transcriptional control ofÂpluripotency. Nature Cell Biology, 2017, 19, 60-67.	10.3	59
187	Signaling axis involving Hedgehog, Notch, and Scl promotes the embryonic endothelial-to-hematopoietic transition. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E141-E150.	7.1	58
188	Origins of Mammalian Hematopoiesis: In Vivo Paradigms and In Vitro Models. Current Topics in Developmental Biology, 2004, 60, 127-196.	2.2	55
189	Stem cells and the evolving notion of cellular identity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140376.	4.0	55
190	Lin28 and let-7 regulate the timing of cessation of murine nephrogenesis. Nature Communications, 2019, 10, 168.	12.8	55
191	Pancreatic circulating tumor cell profiling identifies LIN28B as a metastasis driver and drug target. Nature Communications, 2020, 11 , 3303.	12.8	55
192	A Robust Approach to Identifying Tissue-Specific Gene Expression Regulatory Variants Using Personalized Human Induced Pluripotent Stem Cells. PLoS Genetics, 2009, 5, e1000718.	3.5	55
193	Phase 1 study of lonafarnib (SCH 66336) and imatinib mesylate in patients with chronic myeloid leukemia who have failed prior singleâ€agent therapy with imatinib. Cancer, 2007, 110, 1295-1302.	4.1	53
194	Effect of Developmental Stage of HSC and Recipient on Transplant Outcomes. Developmental Cell, 2014, 29, 621-628.	7.0	53
195	Precise let-7 expression levels balance organ regeneration against tumor suppression. ELife, 2015, 4, e09431.	6.0	53
196	Deciphering the rules of ceRNA networks. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7112-7113.	7.1	52
197	Sex-specific regulation of weight and puberty by the Lin28/let-7 axis. Journal of Endocrinology, 2016, 228, 179-191.	2.6	52
198	Notch-HES1 signaling axis controls hemato-endothelial fate decisions of human embryonic and induced pluripotent stem cells. Blood, 2013, 122, 1162-1173.	1.4	50

#	Article	IF	Citations
199	Metabolic Regulation of Inflammasome Activity Controls Embryonic Hematopoietic Stem and Progenitor Cell Production. Developmental Cell, 2020, 55, 133-149.e6.	7.0	50
200	Derivation and maintenance of human embryonic stem cells from poor-quality in vitro fertilization embryos. Nature Protocols, 2008, 3, 923-933.	12.0	49
201	Zcchc11 Uridylates Mature miRNAs to Enhance Neonatal IGF-1 Expression, Growth, and Survival. PLoS Genetics, 2012, 8, e1003105.	3.5	49
202	Modulation of murine embryonic stem cell–derived CD41+c-kit+ hematopoietic progenitors by ectopic expression of Cdx genes. Blood, 2008, 111, 4944-4953.	1.4	48
203	Interactions between Cdx genes and retinoic acid modulate early cardiogenesis. Developmental Biology, 2011, 354, 134-142.	2.0	48
204	<i>Lin28a</i> Regulates Germ Cell Pool Size and Fertility. Stem Cells, 2013, 31, 1001-1009.	3.2	47
205	Flow-induced protein kinase A–CREB pathway acts via BMP signaling to promote HSC emergence. Journal of Experimental Medicine, 2015, 212, 633-648.	8.5	47
206	RNAi Reveals Phase-Specific Global Regulators of Human Somatic Cell Reprogramming. Cell Reports, 2016, 15, 2597-2607.	6.4	47
207	Expression of interferon consensus sequence binding protein induces potent immunity against BCR/ABL-induced leukemia. Blood, 2001, 97, 3491-3497.	1.4	46
208	Autocrine and paracrine effects of an ES-cell derived, BCR/ABL-transformed hematopoietic cell line that induces leukemia in mice. Oncogene, 2001, 20, 2636-2646.	5.9	43
209	A Role for Thrombopoietin in Hemangioblast Development. Stem Cells, 2003, 21, 272-280.	3.2	43
210	New ISSCR guidelines: clinical translation of stem cell research. Lancet, The, 2016, 387, 1979-1981.	13.7	42
211	9-(Arenethenyl)purines as Dual Src/Abl Kinase Inhibitors Targeting the Inactive Conformation: Design, Synthesis, and Biological Evaluation. Journal of Medicinal Chemistry, 2009, 52, 4743-4756.	6.4	41
212	Failure to replicate the STAP cell phenomenon. Nature, 2015, 525, E6-E9.	27.8	41
213	Policy: Global standards for stem-cell research. Nature, 2016, 533, 311-313.	27.8	41
214	Euchromatin islands in large heterochromatin domains are enriched for CTCF binding and differentially DNA-methylated regions. BMC Genomics, 2012, 13, 566.	2.8	40
215	Notch1 acts via Foxc2 to promote definitive hematopoiesis via effects on hemogenic endothelium. Blood, 2015, 125, 1418-1426.	1.4	40
216	A CLK3-HMGA2 Alternative Splicing Axis Impacts Human Hematopoietic Stem Cell Molecular Identity throughout Development. Cell Stem Cell, 2018, 22, 575-588.e7.	11.1	40

#	Article	IF	CITATIONS
217	Acceleration of mesoderm development and expansion of hematopoietic progenitors in differentiating ES cells by the mouse Mix-like homeodomain transcription factor. Blood, 2006, 107, 3122-3130.	1.4	39
218	Mesodermal patterning activity of SCL. Experimental Hematology, 2008, 36, 1593-1603.	0.4	38
219	Induced pluripotent stem cells: AÂnovel frontier in the study of human primary immunodeficiencies. Journal of Allergy and Clinical Immunology, 2011, 127, 1400-1407.e4.	2.9	37
220	Diversification of reprogramming trajectories revealed by parallel single-cell transcriptome and chromatin accessibility sequencing. Science Advances, 2020, 6, .	10.3	37
221	Hematopoiesis from embryonic stem cells: lessons from and for ontogeny. Experimental Hematology, 2003, 31, 994-1006.	0.4	37
222	Interferon-α signaling promotes embryonic HSC maturation. Blood, 2016, 128, 204-216.	1.4	36
223	Polar Extremes in the Clinical Use of Stem Cells. New England Journal of Medicine, 2017, 376, 1075-1077.	27.0	36
224	A nontranscriptional role for Oct4 in the regulation of mitotic entry. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15768-15773.	7.1	35
225	Interaction of retinoic acid and scl controls primitive blood development. Blood, 2010, 116, 201-209.	1.4	34
226	Chronic Myeloid Leukemia:. Cell, 2004, 119, 314-316.	28.9	33
227	Anticipating Clinical Resistance to Target-Directed Agents. Molecular Diagnosis and Therapy, 2006, 10, 67-76.	3.8	33
228	Scientific and clinical opportunities for modeling blood disorders with embryonic stem cells. Blood, 2006, 107, 2605-2612.	1.4	33
229	Genomic Approaches to Deconstruct Pluripotency. Annual Review of Genomics and Human Genetics, 2011, 12, 165-185.	6.2	33
230	Mining for SNPs: putting the common variants-common disease hypothesis to the test. Pharmacogenomics, 2000, 1, 27-37.	1.3	32
231	Novel retroviral vectors to facilitate expression screens in mammalian cells. Nucleic Acids Research, 2002, 30, 142e-142.	14.5	32
232	Inducible Transgene Expression in Mouse Stem Cells. , 2005, 105, 023-046.		31
233	Stem cells assessed. Nature Reviews Molecular Cell Biology, 2012, 13, 471-476.	37.0	31
234	LIN28B regulates transcription and potentiates MYCN-induced neuroblastoma through binding to ZNF143 at target gene promotors. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16516-16526.	7.1	31

#	Article	IF	Citations
235	Disruptive reproductive technologies. Science Translational Medicine, 2017, 9, .	12.4	30
236	LIN28 coordinately promotes nucleolar/ribosomal functions and represses the 2C-like transcriptional program in pluripotent stem cells. Protein and Cell, 2022, 13, 490-512.	11.0	28
237	The Cdx-Hox Pathway in Hematopoietic Stem Cell Formation from Embryonic Stem Cells. Annals of the New York Academy of Sciences, 2007, 1106 , $197-208$.	3.8	27
238	ICSBP-mediated immune protection against BCR-ABL–induced leukemia requires the CCL6 and CCL9 chemokines. Blood, 2009, 113, 3813-3820.	1.4	27
239	A Stem Cell Perspective on Cellular Engineering. Science, 2013, 342, 700-702.	12.6	27
240	The developmental stage of the hematopoietic niche regulates lineage in <i>MLL-</i> rearranged leukemia. Journal of Experimental Medicine, 2019, 216, 527-538.	8.5	27
241	Human iPS Cell Derivation/Reprogramming. Current Protocols in Stem Cell Biology, 2009, 8, Unit 4A.1.	3.0	25
242	Engineered Murine HSCs Reconstitute Multi-lineage Hematopoiesis and Adaptive Immunity. Cell Reports, 2016, 17, 3178-3192.	6.4	25
243	Cellular Therapy for Fanconi Anemia: The Past, Present, and Future. Biology of Blood and Marrow Transplantation, 2011, 17, S109-S114.	2.0	24
244	Mitochondrial and Redox Modifications in Huntington Disease Induced Pluripotent Stem Cells Rescued by CRISPR/Cas9 CAGs Targeting. Frontiers in Cell and Developmental Biology, 2020, 8, 576592.	3.7	24
245	rRNA biogenesis regulates mouse 2C-like state by 3D structure reorganization of peri-nucleolar heterochromatin. Nature Communications, 2021, 12, 6365.	12.8	24
246	Towards combination target-directed chemotherapy for chronic myeloid leukemia: Role of farnesyl transferase inhibitors. Seminars in Hematology, 2003, 40, 11-14.	3.4	23
247	Patterning definitive hematopoietic stem cells from embryonic stem cells. Experimental Hematology, 2005, 33, 971-979.	0.4	23
248	Transgene Expression and RNA Interference in Embryonic Stem Cells. Methods in Enzymology, 2006, 420, 49-64.	1.0	23
249	Application of induced pluripotent stem cells to hematologic disease. Cytotherapy, 2009, 11, 980-989.	0.7	23
250	Lin28b regulates age-dependent differences in murine platelet function. Blood Advances, 2019, 3, 72-82.	5.2	22
251	A screen to identify drug resistant variants to target-directed anti-cancer agents. Biological Procedures Online, 2003, 5, 204-210.	2.9	21
252	In vitro gametogenesis from embryonic stem cells. Current Opinion in Cell Biology, 2004, 16, 688-692.	5.4	21

#	Article	IF	Citations
253	Disease Models from Pluripotent Stem Cells. Annals of the New York Academy of Sciences, 2009, 1176, 191-196.	3.8	21
254	Hematopoietic stem cells develop in the absence of endothelial cadherin 5 expression. Blood, 2015, 126, 2811-2820.	1.4	20
255	Animal Models of BCR/ABL-Induced Leukemias. Leukemia and Lymphoma, 1993, 11, 57-60.	1.3	19
256	AP24163 Inhibits the Gatekeeper Mutant of BCRâ€ABL and Suppresses ⟨i⟩In vitro⟨/i⟩ Resistance. Chemical Biology and Drug Design, 2010, 75, 223-227.	3.2	19
257	Telomere dynamics in dyskeratosis congenita: the long and the short of iPS. Cell Research, 2011, 21, 1157-1160.	12.0	19
258	Cellular Alchemy and the Golden Age of Reprogramming. Cell, 2012, 151, 1151-1154.	28.9	19
259	Towards hematopoietic reconstitution from embryonic stem cells: a sanguine future. Current Opinion in Hematology, 2007, 14, 343-347.	2.5	18
260	A systems biology pipeline identifies regulatory networks for stem cell engineering. Nature Biotechnology, 2019, 37, 810-818.	17.5	18
261	Clump Passaging and Expansion of Human Embryonic and Induced Pluripotent Stem Cells on Mouse Embryonic Fibroblast Feeder Cells. Current Protocols in Stem Cell Biology, 2010, 14, Unit 1C.10.	3.0	18
262	Towards the Generation of Patient-Specific Pluripotent Stem Cells for Combined Gene and Cell Therapy of Hematologic Disorders. Hematology American Society of Hematology Education Program, 2007, 2007, 17-22.	2.5	17
263	Excision of a Viral Reprogramming Cassette by Delivery of Synthetic Cre mRNA. Current Protocols in Stem Cell Biology, 2012, 21, Unit4A.5.	3.0	17
264	Differentiation Potential of Histocompatible Parthenogenetic Embryonic Stem Cells. Annals of the New York Academy of Sciences, 2007, 1106, 209-218.	3.8	16
265	Isolation of Hematopoietic Stem Cells from Mouse Embryonic Stem Cells. Current Protocols in Stem Cell Biology, 2008, 4, Unit 1F.3.	3.0	16
266	A nanobody targeting the LIN28:let-7 interaction fragment of TUT4 blocks uridylation of let-7. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4653-4663.	7.1	15
267	Gleevec Resistance: Lessons for Target-Directed Drug Development. Cell Cycle, 2003, 2, 189-190.	2.6	14
268	Cdx4 is dispensable for murine adult hematopoietic stem cells but promotes MLL-AF9-mediated leukemogenesis. Haematologica, 2010, 95, 1642-1650.	3.5	14
269	Caudal genes in blood development and leukemia. Annals of the New York Academy of Sciences, 2012, 1266, 47-54.	3.8	14
270	Human embryonic stem cells flock together. Nature Biotechnology, 2007, 25, 748-750.	17.5	13

#	Article	IF	CITATIONS
271	Mapping the Road to the Clinical Translation of Stem Cells. Cell Stem Cell, 2008, 2, 139-140.	11.1	13
272	Evidence generation and reproducibility in cell and gene therapy research: A call to action. Molecular Therapy - Methods and Clinical Development, 2021, 22, 11-14.	4.1	13
273	Genetic complementation of cytokine signaling identifies central role of kinases in hematopoietic cell proliferation. Oncogene, 2004, 23, 1214-1220.	5.9	12
274	Liveâ€Cell Immunofluorescence Staining of Human Pluripotent Stem Cells. Current Protocols in Stem Cell Biology, 2011, 19, Unit 1C.12.	3.0	12
275	Transplantation of Macaca cynomolgus iPS-derived hematopoietic cells in NSG immunodeficient mice. Haematologica, 2015, 100, e428-e431.	3.5	12
276	LIN28B alters ribosomal dynamics to promote metastasis in MYCN-driven malignancy. Journal of Clinical Investigation, $2021,131,.$	8.2	12
277	Developmental maturation of the hematopoietic system controlled by a Lin28b-let-7-Cbx2 axis. Cell Reports, 2022, 39, 110587.	6.4	12
278	Development of Hematopoietic Repopulating Cells from Embryonic Stem Cells. Methods in Enzymology, 2003, 365, 114-129.	1.0	11
279	Farnesyl transferase inhibitor resistance probed by target mutagenesis. Blood, 2007, 110, 2102-2109.	1.4	11
280	Pluripotent Stem Cells in Research and Treatment of Hemoglobinopathies. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a011841-a011841.	6.2	11
281	Reprogramming in situ. Nature, 2013, 502, 309-310.	27.8	11
282	Sequential regulation of hemogenic fate and hematopoietic stem and progenitor cell formation from arterial endothelium by Ezh1/2. Stem Cell Reports, 2021, 16, 1718-1734.	4.8	11
283	CellComm infers cellular crosstalk that drives haematopoietic stem and progenitor cell development. Nature Cell Biology, 2022, 24, 579-589.	10.3	11
284	Triple genomes go far. Nature, 2011, 478, 40-41.	27.8	10
285	Transcriptome Dynamics of Hematopoietic Stem Cell Formation Revealed Using a Combinatorial Runx1 and Ly6a Reporter System. Stem Cell Reports, 2020, 14, 956-971.	4.8	8
286	Comment on "Drug Screening for ALS Using Patient-Specific Induced Pluripotent Stem Cells― Science Translational Medicine, 2013, 5, 188le2.	12.4	7
287	A new route to human embryonic stem cells. Nature Medicine, 2013, 19, 820-821.	30.7	6
288	Defining cellular identity through network biology. Cell Cycle, 2014, 13, 3313-3314.	2.6	6

#	Article	IF	Citations
289	Another Horse in the Meta-Stable State of Pluripotency. Cell Stem Cell, 2010, 7, 641-642.	11.1	5
290	Hematopoietic defects and iPSC disease modeling: Lessons learned. Immunology Letters, 2013, 155, 18-20.	2.5	5
291	Deriving blood stem cells from pluripotent stem cells for research and therapy. Best Practice and Research in Clinical Haematology, 2014, 27, 293-297.	1.7	5
292	Two new routes to make blood: Hematopoietic specification from pluripotent cell lines versus reprogramming of somatic cells. Experimental Hematology, 2015, 43, 756-759.	0.4	5
293	Lin28 paralogs regulate lung branching morphogenesis. Cell Reports, 2021, 36, 109408.	6.4	5
294	Efficient Gene Knockdowns in Human Embryonic Stem Cells Using Lentiviral-Based RNAi. Methods in Molecular Biology, 2009, 482, 35-42.	0.9	5
295	Hypoxic, glycolytic metabolism is a vulnerability of B-acute lymphoblastic leukemia-initiating cells. Cell Reports, 2022, 39, 110752.	6.4	5
296	From Hen House to Bedside: Tracing Hanafusa's Legacy from Avian Leukemia Viruses to SRC to ABL and Beyond. Genes and Cancer, 2010, 1, 1164-1169.	1.9	4
297	Derivation of human embryonic stem cells with NEMO deficiency. Stem Cell Research, 2012, 8, 410-415.	0.7	4
298	Towards combination target-directed chemotherapy for chronic myeloid leukemia: Role of farnesyl transferase inhibitors. Seminars in Hematology, 2003, 40, 11-14.	3.4	4
299	Rationalizing Autotransplant Strategies for Chronic Myeloid Leukemia. Leukemia and Lymphoma, 1996, 21, 353-358.	1.3	3
300	Customized human embryonic stem cells. Nature Biotechnology, 2005, 23, 826-828.	17.5	3
301	Male Germ Cells. Methods in Enzymology, 2006, 418, 307-314.	1.0	3
302	Autophagy: It's in Your Blood. Developmental Cell, 2017, 40, 518-520.	7.0	3
303	Current prospects for the generation of patient-specific pluripotent cells from adult tissues. Regenerative Medicine, 2007, 2, 743-752.	1.7	2
304	Global Forum Discusses Stem Cell Research Strategy. Cell Stem Cell, 2008, 2, 435-436.	11.1	2
305	The Nomenclature System Should Be Sustainable, but Also Practical. Cell Stem Cell, 2011, 8, 606-607.	11.1	2
306	Signaling through RNA-binding proteins as a cell fate regulatory mechanism. Cell Cycle, 2017, 16, 723-724.	2.6	2

#	Article	IF	Citations
307	Reassembling embryos in vitro from component stem cells. Cell Research, 2017, 27, 961-962.	12.0	2
308	The ISSCR in China. Cell Stem Cell, 2008, 2, 33.	11.1	1
309	Proteolytic autodigestion. Cell Cycle, 2013, 12, 3457-3458.	2.6	1
310	Functional Evaluation of ES–Somatic Cell Hybrids <i>In Vitro</i> and <i>In Vivo</i> . Cellular Reprogramming, 2014, 16, 167-174.	0.9	1
311	Introduction to the Special Issue on CRISPR. Perspectives in Biology and Medicine, 2020, 63, 1-13.	0.5	1
312	Hematopoietic Stem Cells., 2009,, 211-215.		1
313	Haematopoietic progenitor and lymphoid differentiation from human pluripotent stem cells. Protocol Exchange, 0, , .	0.3	1
314	An induced pluripotent stem cell model of Fanconi anemia reveals mechanisms of p53-driven progenitor cell differentiation. Blood Advances, 2020, 4, 4679-4692.	5.2	1
315	Simplifying hESC culture. Blood, 2005, 105, 4550-4550.	1.4	0
316	Part D: Directed Differentiation of Human Embryonic Stem Cells into Hematopoeiticin vivo Repopulating Cells., 0,, 273-285.		0
317	Konrad Hochedlinger: ISSCR Outstanding Young Investigator for 2009. Cell Stem Cell, 2009, 5, 154-155.	11.1	0
318	Hematopoietic Stem Cells., 2013,, 553-557.		0
319	Hematopoietic Stem Cells. , 2014, , 219-226.		0
320	Hematopoietic Stem Cells. , 2004, , 279-283.		0
321	Biomechanical forces promote blood development through prostaglandin E ₂ and the cAMP–PKA signaling axis. Journal of General Physiology, 2015, 145, 1455OIA20.	1.9	0
322	Flow-induced protein kinase A–CREB pathway acts via BMP signaling to promote HSC emergence. Journal of Cell Biology, 2015, 209, 2092OIA67.	5.2	0
323	Biomechanical forces promote blood development through prostaglandin E2and the cAMP–PKA signaling axis. Journal of Cell Biology, 2015, 209, 2092OIA69.	5. 2	0
324	Adenosine signaling promotes hematopoietic stem and progenitor cell emergence. Journal of Cell Biology, 2015, 209, 2092OIA68.	5.2	0

#	Article	IF	CITATIONS
325	Dipping a toe in the fountain of youth. Nature Aging, 2022, 2, 192-194.	11.6	0