Gary K Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11898256/publications.pdf

Version: 2024-02-01

41 3,451 24 40 papers citations h-index g-index

41 41 41 7764 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Genome-wide association studies identify four ER negative–specific breast cancer risk loci. Nature Genetics, 2013, 45, 392-398.	9.4	374
2	Meta-analysis identifies common variants associated with body mass index in east Asians. Nature Genetics, 2012, 44, 307-311.	9.4	372
3	Fast and flexible simulation of DNA sequence data. Genome Research, 2009, 19, 136-142.	2.4	358
4	The landscape of recombination in African Americans. Nature, 2011, 476, 170-175.	13.7	319
5	A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor–negative breast cancer. Nature Genetics, 2011, 43, 1210-1214.	9.4	279
6	A meta-analysis identifies new loci associated with body mass index in individuals of African ancestry. Nature Genetics, 2013, 45, 690-696.	9.4	232
7	Genome-wide association study of prostate cancer in men of African ancestry identifies a susceptibility locus at 17q21. Nature Genetics, 2011, 43, 570-573.	9.4	198
8	A meta-analysis of genome-wide association studies of breast cancer identifies two novel susceptibility loci at $6q14$ and $20q11$. Human Molecular Genetics, 2012 , 21 , 5373 - 5384 .	1.4	168
9	Characterizing Genetic Risk at Known Prostate Cancer Susceptibility Loci in African Americans. PLoS Genetics, 2011, 7, e1001387.	1.5	117
10	Enhanced Statistical Tests for GWAS in Admixed Populations: Assessment using African Americans from CARe and a Breast Cancer Consortium. PLoS Genetics, 2011, 7, e1001371.	1.5	110
11	Common variants at $11q12$, $10q26$ and $3p11.2$ are associated with prostate cancer susceptibility in Japanese. Nature Genetics, 2012 , 44 , 426 - 429 .	9.4	98
12	Identification, Replication, and Fine-Mapping of Loci Associated with Adult Height in Individuals of African Ancestry. PLoS Genetics, 2011, 7, e1002298.	1.5	93
13	Enriching the Analysis of Genomewide Association Studies with Hierarchical Modeling. American Journal of Human Genetics, 2007, 81, 397-404.	2.6	82
14	A genome-wide association study of breast cancer in women of African ancestry. Human Genetics, 2013, 132, 39-48.	1.8	70
15	Fine-mapping of breast cancer susceptibility loci characterizes genetic risk in African Americans. Human Molecular Genetics, 2011, 20, 4491-4503.	1.4	61
16	Admixture mapping identifies a locus on 6q25 associated with breast cancer risk in US Latinas. Human Molecular Genetics, 2012, 21, 1907-1917.	1.4	60
17	Evaluating Genetic Risk for Prostate Cancer among Japanese and Latinos. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 2048-2058.	1.1	51
18	Mapping adipose and muscle tissue expression quantitative trait loci in African Americans to identify genes for type 2 diabetes and obesity. Human Genetics, 2016, 135, 869-880.	1.8	44

#	Article	IF	Citations
19	A comprehensive examination of breast cancer risk loci in African American women. Human Molecular Genetics, 2014, 23, 5518-5526.	1.4	42
20	cit: hypothesis testing software for mediation analysis in genomic applications. Bioinformatics, 2016, 32, 2364-2365.	1.8	42
21	Analysis of Latino populations from GALA and MEC studies reveals genomic loci with biased local ancestry estimation. Bioinformatics, 2013, 29, 1407-1415.	1.8	38
22	Optical Control of Reactions between Water and Laser-Cooled Be ⁺ Ions. Journal of Physical Chemistry Letters, 2018, 9, 3555-3560.	2.1	37
23	Convex Clustering: An Attractive Alternative to Hierarchical Clustering. PLoS Computational Biology, 2015, 11, e1004228.	1.5	34
24	Reproducibility, Performance, and Clinical Utility of a Genetic Risk Prediction Model for Prostate Cancer in Japanese. PLoS ONE, 2012, 7, e46454.	1.1	30
25	Using biological knowledge to discover higher order interactions in genetic association studies. Genetic Epidemiology, 2010, 34, 863-878.	0.6	20
26	A Genome-Wide Scan for Breast Cancer Risk Haplotypes among African American Women. PLoS ONE, 2013, 8, e57298.	1.1	20
27	Isomer-specific kinetics of the C $<$ sup $>+sup>+ H <sub>2sub> O reaction at the temperature of interstellar clouds. Science Advances, 2021, 7, .$	4.7	16
28	Isotope-selective chemistry in the Be ⁺ (² S _{1/2}) + HOD â†' BeOD ⁺ /BeOH ⁺ + H/D reaction. Physical Chemistry Chemical Physics, 2019, 21, 14005-14011.	1.3	14
29	Precise inference of copy number alterations in tumor samples from SNP arrays. Bioinformatics, 2013, 29, 2964-2970.	1.8	12
30	Mendel-GPU: haplotyping and genotype imputation on graphics processing units. Bioinformatics, 2012, 28, 2979-2980.	1.8	11
31	Accommodating Chromosome Inversions in Linkage Analysis. American Journal of Human Genetics, 2006, 79, 238-251.	2.6	8
32	A scalable and portable framework for massively parallel variable selection in genetic association studies. Bioinformatics, 2012, 28, 719-720.	1.8	8
33	The Potential for Enhancing the Power of Genetic Association Studies in African Americans through the Reuse of Existing Genotype Data. PLoS Genetics, 2010, 6, e1001096.	1.5	8
34	Iterative hard thresholding for model selection in genomeâ€wide association studies. Genetic Epidemiology, 2017, 41, 756-768.	0.6	6
35	Discovering epistasis in large scale genetic association studies by exploiting graphics cards. Frontiers in Genetics, 2013, 4, 266.	1.1	5
36	Incorporating biological information into association studies of sequencing data. Genetic Epidemiology, 2011, 35, S29-34.	0.6	4

#	Article	IF	CITATIONS
37	Determining reaction pathways at low temperatures by isotopic substitution: the case of BeD ⁺ + H ₂ O. New Journal of Physics, 2021, 23, 115004.	1.2	4
38	Enhancing the discovery of rare disease variants through hierarchical modeling. BMC Proceedings, 2011, 5, S16.	1.8	2
39	Methodological Considerations in Estimation of Phenotype Heritability Using Genome-Wide SNP Data, Illustrated by an Analysis of the Heritability of Height in a Large Sample of African Ancestry Adults. PLoS ONE, 2015, 10, e0131106.	1.1	2
40	al3c: high-performance software for parameter inference using Approximate Bayesian Computation: Table 1 Bioinformatics, 2015, 31, 3549-3551.	1.8	2
41	Genome-wide association analyses of expression phenotypes. Genetic Epidemiology, 2007, 31, S7-S11.	0.6	0