Efstathios Karathanasis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1189636/publications.pdf

Version: 2024-02-01

46 papers

2,530 citations

236925 25 h-index 233421 45 g-index

47 all docs

47 docs citations

times ranked

47

4006 citing authors

#	Article	IF	CITATIONS
1	Comparison of the uptake of untargeted and targeted immunostimulatory nanoparticles by immune cells in the microenvironment of metastatic breast cancer. Journal of Materials Chemistry B, 2022, 10, 224-235.	5.8	9
2	Dual agonist immunostimulatory nanoparticles combine with PD1 blockade for curative neoadjuvant immunotherapy of aggressive cancers. Nanoscale, 2022, 14, 1144-1159.	5.6	11
3	High-Resolution CT Vascular Imaging Using Blood Pool Contrast Agents. Methodist DeBakey Cardiovascular Journal, 2021, 8, 18.	1.0	21
4	Stimuliâ€Responsive Iron Oxide Nanotheranostics: A Versatile and Powerful Approach for Cancer Therapy. Advanced Healthcare Materials, 2021, 10, e2001044.	7.6	27
5	Immunostimulatory nanoparticle incorporating two immune agonists for the treatment of pancreatic tumors. Journal of Controlled Release, 2021, 330, 1095-1105.	9.9	34
6	Hyperthermia-mediated changes in the tumor immune microenvironment using iron oxide nanoparticles. Nanoscale Advances, 2021, 3, 5890-5899.	4.6	5
7	The effect of PEGylation on the efficacy and uptake of an immunostimulatory nanoparticle in the tumor immune microenvironment. Nanoscale Advances, 2021, 3, 4961-4972.	4.6	15
8	Immunostimulatory silica nanoparticle boosts innate immunity in brain tumors. Nanoscale Horizons, 2021, 6, 156-167.	8.0	29
9	Chronic neural activity recorded within breast tumors. Scientific Reports, 2020, 10, 14824.	3.3	32
10	PTPmu-targeted nanoparticles label invasive pediatric and adult glioblastoma. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 28, 102216.	3.3	10
11	Effective treatment of cancer metastasis using a dual-ligand nanoparticle. PLoS ONE, 2019, 14, e0220474.	2.5	21
12	Treatment of Glioblastoma Using Multicomponent Silica Nanoparticles. Advanced Therapeutics, 2019, 2, 1900118.	3.2	23
13	Effect of Dose and Selection of Two Different Ligands on the Deposition and Antitumor Efficacy of Targeted Nanoparticles in Brain Tumors. Molecular Pharmaceutics, 2019, 16, 4352-4360.	4.6	7
14	Nanoparticle Encapsulation of Synergistic Immune Agonists Enables Systemic Codelivery to Tumor Sites and IFN \hat{I}^2 -Driven Antitumor Immunity. Cancer Research, 2019, 79, 5394-5406.	0.9	55
15	Delivery of drugs into brain tumors using multicomponent silica nanoparticles. Nanoscale, 2019, 11, 11910-11921.	5.6	41
16	Precise targeting of cancer metastasis using multi-ligand nanoparticles incorporating four different ligands. Nanoscale, 2018, 10, 6861-6871.	5.6	40
17	Imaging breast cancer using a dual-ligand nanochain particle. PLoS ONE, 2018, 13, e0204296.	2.5	16
18	One-pot synthesis of nanochain particles for targeting brain tumors. Nanoscale, 2017, 9, 9659-9667.	5.6	19

#	Article	IF	CITATIONS
19	Vascular targeting of nanoparticles for molecular imaging of diseased endothelium. Advanced Drug Delivery Reviews, 2017, 113, 141-156.	13.7	64
20	Crossing the barrier: treatment of brain tumors using nanochain particles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 678-695.	6.1	25
21	Paramagnetic Nanoparticles. Methods in Pharmacology and Toxicology, 2016, , 113-136.	0.2	7
22	Vascular Targeting of a Gold Nanoparticle to Breast Cancer Metastasis. Journal of Pharmaceutical Sciences, 2015, 104, 2600-2610.	3.3	46
23	Treatment of Invasive Brain Tumors Using a Chain-like Nanoparticle. Cancer Research, 2015, 75, 1356-1365.	0.9	63
24	Spatiotemporal Targeting of a Dual-Ligand Nanoparticle to Cancer Metastasis. ACS Nano, 2015, 9, 8012-8021.	14.6	107
25	On-Command Drug Release from Nanochains Inhibits Growth of Breast Tumors. Pharmaceutical Research, 2014, 31, 1460-1468.	3 . 5	13
26	Shaping cancer nanomedicine: the effect of particle shape on the <i>in vivo</i> journey of nanoparticles. Nanomedicine, 2014, 9, 121-134.	3.3	493
27	Targeted nanotechnology for cancer imaging. Advanced Drug Delivery Reviews, 2014, 76, 79-97.	13.7	160
28	Treatment of cancer micrometastasis using a multicomponent chain-like nanoparticle. Journal of Controlled Release, 2014, 173, 51-58.	9.9	46
29	Triggered chemotherapeutic drug release from multi-component nanochains mediated by a local magnetic field., 2013,,.		0
30	Multimodalln Vivolmaging Exposes the Voyage of Nanoparticles in Tumor Microcirculation. ACS Nano, 2013, 7, 3118-3129.	14.6	59
31	Imaging Metastasis Using an Integrin-Targeting Chain-Shaped Nanoparticle. ACS Nano, 2012, 6, 8783-8795.	14.6	128
32	Enhanced Delivery of Chemotherapy to Tumors Using a Multicomponent Nanochain with Radio-Frequency-Tunable Drug Release. ACS Nano, 2012, 6, 4157-4168.	14.6	155
33	The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology, 2011, 22, 115101.	2.6	204
34	Assembly of Linear Nano-Chains from Iron Oxide Nanospheres with Asymmetric Surface Chemistry. PLoS ONE, 2011, 6, e15927.	2.5	39
35	Is nanomedicine still promising?. Oncotarget, 2011, 2, 430-432.	1.8	4
36	Imaging Nanoprobe for Prediction of Outcome of Nanoparticle Chemotherapy by Using Mammography. Radiology, 2009, 250, 398-406.	7.3	96

#	Article	IF	CITATIONS
37	Selective Targeting of Nanocarriers to Neutrophils and Monocytes. Annals of Biomedical Engineering, 2009, 37, 1984-1992.	2.5	27
38	Masking and triggered unmasking of targeting ligands on nanocarriers to improve drug delivery to brain tumors. Biomaterials, 2009, 30, 3986-3995.	11.4	122
39	Tumor Vascular Permeability to a Nanoprobe Correlates to Tumor-Specific Expression Levels of Angiogenic Markers. PLoS ONE, 2009, 4, e5843.	2.5	64
40	Multifunctional nanocarriers for mammographic quantification of tumor dosing and prognosis of breast cancer therapy. Biomaterials, 2008, 29, 4815-4822.	11.4	58
41	MRI mediated, non-invasive tracking of intratumoral distribution of nanocarriers in rat glioma. Nanotechnology, 2008, 19, 315101.	2.6	18
42	Triggered release of ciprofloxacin from nanostructured agglomerated vesicles. International Journal of Nanomedicine, 2007, 2, 407-18.	6.7	5
43	Glucose-sensing pulmonary delivery of human insulin to the systemic circulation of rats. International Journal of Nanomedicine, 2007, 2, 501-13.	6.7	5
44	Triggered release of inhaled insulin from the agglomerated vesicles: Pharmacodynamic studies in rats. Journal of Controlled Release, 2006, 113, 117-127.	9.9	17
45	Preparation of in vivo cleavable agglomerated liposomes suitable for modulated pulmonary drug delivery. Journal of Controlled Release, 2005, 103, 159-175.	9.9	51
46	Agglomerated vesicle technology: a new class of particles for controlled and modulated pulmonary drug delivery. Journal of Controlled Release, 2003, 93, 15-28.	9.9	39