Emad Oveisi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1189167/publications.pdf

Version: 2024-02-01

117453 110170 4,813 65 34 64 citations h-index g-index papers 69 69 69 8155 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	CsPbBr ₃ QD/AlO _{<i>x</i>} Inorganic Nanocomposites with Exceptional Stability in Water, Light, and Heat. Angewandte Chemie - International Edition, 2017, 56, 10696-10701.	7.2	389
2	Structural Sensitivities in Bimetallic Catalysts for Electrochemical CO ₂ Reduction Revealed by Agâ€"Cu Nanodimers. Journal of the American Chemical Society, 2019, 141, 2490-2499.	6.6	382
3	Rapid, Selective Heavy Metal Removal from Water by a Metal–Organic Framework/Polydopamine Composite. ACS Central Science, 2018, 4, 349-356.	5.3	311
4	Selective growth of layered perovskites for stable and efficient photovoltaics. Energy and Environmental Science, 2018, 11, 952-959.	15.6	305
5	Highâ€Performance Perovskite Solar Cells with Enhanced Environmental Stability Based on Amphiphileâ€Modified CH ₃ NH ₃ Pbl ₃ . Advanced Materials, 2016, 28, 2910-2915.	11.1	258
6	Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction. Nature Communications, 2018, 9, 3117.	5.8	253
7	Rapid, Selective Extraction of Trace Amounts of Gold from Complex Water Mixtures with a Metal–Organic Framework (MOF)/Polymer Composite. Journal of the American Chemical Society, 2018, 140, 16697-16703.	6.6	195
8	Selective and Stable Electroreduction of CO ₂ to CO at the Copper/Indium Interface. ACS Catalysis, 2018, 8, 6571-6581.	5.5	175
9	Dopantâ€Free Holeâ€∢ransporting Materials for Stable and Efficient Perovskite Solar Cells. Advanced Materials, 2017, 29, 1606555.	11.1	171
10	Single-layer graphene membranes by crack-free transfer for gas mixture separation. Nature Communications, 2018, 9, 2632.	5.8	160
11	Synthesis of Cu/CeO _{2-x} Nanocrystalline Heterodimers with Interfacial Active Sites To Promote CO ₂ Electroreduction. ACS Catalysis, 2019, 9, 5035-5046.	5.5	124
12	Preparation of Highly Porous Metal–Organic Framework Beads for Metal Extraction from Liquid Streams. Journal of the American Chemical Society, 2020, 142, 13415-13425.	6.6	123
13	A new post-synthetic polymerization strategy makes metal–organic frameworks more stable. Chemical Science, 2019, 10, 4542-4549.	3.7	112
14	Proton-transfer-induced 3D/2D hybrid perovskites suppress ion migration and reduce luminance overshoot. Nature Communications, 2020, 11, 3378.	5.8	108
15	Pbl ₂ –HMPA Complex Pretreatment for Highly Reproducible and Efficient CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 14380-14387.	6.6	107
16	Large-scale synthesis of crystalline g-C ₃ N ₄ nanosheets and high-temperature H ₂ sieving from assembled films. Science Advances, 2020, 6, eaay9851.	4.7	105
17	Enhanced charge collection with passivation of the tin oxide layer in planar perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 12729-12734.	5.2	103
18	Trash into Treasure: δâ€FAPbI ₃ Polymorph Stabilized MAPbI ₃ Perovskite with Power Conversion Efficiency beyond 21%. Advanced Materials, 2018, 30, e1707143.	11.1	101

#	Article	lF	Citations
19	High-permeance polymer-functionalized single-layer graphene membranes that surpass the postcombustion carbon capture target. Energy and Environmental Science, 2019, 12, 3305-3312.	15.6	100
20	Functional carbon nanosheets prepared from hexayne amphiphile monolayers at room temperature. Nature Chemistry, 2014, 6, 468-476.	6.6	97
21	Auto-passivation of crystal defects in hybrid imidazolium/methylammonium lead iodide films by fumigation with methylamine affords high efficiency perovskite solar cells. Nano Energy, 2019, 58, 105-111.	8.2	78
22	MOFâ€Derived Cobalt Phosphide/Carbon Nanocubes for Selective Hydrogenation of Nitroarenes to Anilines. Chemistry - A European Journal, 2018, 24, 4234-4238.	1.7	73
23	Preserving Porosity of Mesoporous Metal–Organic Frameworks through the Introduction of Polymer Guests. Journal of the American Chemical Society, 2019, 141, 12397-12405.	6.6	68
24	Inkjetâ€Printed Mesoporous TiO ₂ and Perovskite Layers for High Efficiency Perovskite Solar Cells. Energy Technology, 2019, 7, 317-324.	1.8	67
25	Efficient reductive amination of HMF with well dispersed Pd nanoparticles immobilized in a porous MOF/polymer composite. Green Chemistry, 2020, 22, 368-378.	4.6	58
26	Stable perovskite solar cells using tin acetylacetonate based electron transporting layers. Energy and Environmental Science, 2019, 12, 1910-1917.	15.6	57
27	A large planetary body inferred from diamond inclusions in a ureilite meteorite. Nature Communications, 2018, 9, 1327.	5.8	56
28	Atomic scale symmetry and polar nanoclusters in the paraelectric phase of ferroelectric materials. Nature Communications, 2021, 12, 3509.	5.8	51
29	Millisecond lattice gasification for high-density CO ₂ - and O ₂ -sieving nanopores in single-layer graphene. Science Advances, 2021, 7, .	4.7	47
30	Postâ€test Analysis on a Solid Oxide Cell Stack Operated for 10,700 Hours in Steam Electrolysis Mode. Fuel Cells, 2017, 17, 541-549.	1.5	43
31	Mixed-Phase MOF-Derived Titanium Dioxide for Photocatalytic Hydrogen Evolution: The Impact of the Templated Morphology. ACS Applied Energy Materials, 2018, 1, 6541-6548.	2.5	42
32	Corona protein composition and cytotoxicity evaluation of ultra-small zeolites synthesized from template free precursor suspensions. Toxicology Research, 2013, 2, 270.	0.9	41
33	Metal–Organicâ€Frameworkâ€Derived Co ₃ S ₄ Hollow Nanoboxes for the Selective Reduction of Nitroarenes. ChemSusChem, 2018, 11, 3131-3138.	3.6	40
34	Oxidative Print Light Synthesis Thin Film Deposition of Prussian Blue. ACS Applied Electronic Materials, 2020, 2, 927-935.	2.0	37
35	A metal–organic framework/polymer derived catalyst containing single-atom nickel species for electrocatalysis. Chemical Science, 2020, 11, 10991-10997.	3.7	32
36	Structure–Property Relationships of Microphase-Separated Metallosupramolecular Polymers. Macromolecules, 2020, 53, 5068-5084.	2.2	25

#	Article	IF	Citations
37	Dynamics and healing behavior of metallosupramolecular polymers. Science Advances, 2021, 7, .	4.7	25
38	Nanocrystals as Precursors in Solid-State Reactions for Size- and Shape-Controlled Polyelemental Nanomaterials. Journal of the American Chemical Society, 2020, 142, 15931-15940.	6.6	21
39	Tilt-less 3-D electron imaging and reconstruction of complex curvilinear structures. Scientific Reports, 2017, 7, 10630.	1.6	19
40	Insights into image contrast from dislocations in ADF-STEM. Ultramicroscopy, 2019, 200, 139-148.	0.8	18
41	Prussian Blue Analogue—Sodium–Vanadium Hexacyanoferrate as a Cathode Material for Na-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 9758-9765.	2.5	18
42	Rapid inkjet printing of high catalytic activity Co3O4/N-rGO layers for oxygen reduction reaction. Applied Catalysis A: General, 2018, 563, 9-17.	2.2	17
43	A Facile Preparative Route of Nanoscale Perovskites over Mesoporous Metal Oxide Films and Their Applications to Photosensitizers and Light Emitters. Advanced Functional Materials, 2018, 28, 1803801.	7.8	17
44	Sodium chromium hexacyanoferrate as a potential cathode material for aqueous sodium-ion batteries. Chemical Communications, 2019, 55, 14633-14636.	2.2	16
45	The role of malachite nanorods for the electrochemical reduction of CO2 to C2 hydrocarbons. Electrochimica Acta, 2019, 297, 55-60.	2.6	16
46	Stereo-vision three-dimensional reconstruction of curvilinear structures imaged with a TEM. Ultramicroscopy, 2018, 184, 116-124.	0.8	15
47	Print-Light-Synthesis of Ni and NiFe-Nanoscale Catalysts for Oxygen Evolution. ACS Applied Energy Materials, 2019, 2, 6322-6331.	2.5	15
48	Discovery of a self-healing catalyst for the hydrolytic dehydrogenation of ammonia borane. Journal of Materials Chemistry A, 2019, 7, 23830-23837.	5.2	14
49	Bottom-up synthesis of graphene films hosting atom-thick molecular-sieving apertures. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	14
50	Slip in directionally solidified Mo-alloy micropillars – Part I: Nominally dislocation-free pillars. Acta Materialia, 2012, 60, 4604-4613.	3.8	13
51	Structure and electronic properties of AlCrOxN1â^'x thin films deposited by reactive magnetron sputtering. Thin Solid Films, 2014, 572, 176-183.	0.8	13
52	Soft-probe-scanning electrochemical microscopy reveals electrochemical surface reactivity of E. coli biofilms. Sensors and Actuators B: Chemical, 2021, 334, 129669.	4.0	11
53	Strontium Migration at the GDC-YSZ Interface of Solid Oxide Cells in SOFC and SOEC Modes. ECS Transactions, 2017, 78, 3297-3307.	0.3	10
54	Hard Phase Crystallization Directs the Phase Segregation of Hydrogen-Bonded Supramolecular Polymers. Macromolecules, 2019, 52, 2164-2172.	2.2	9

#	Article	IF	CITATIONS
55	Spatially Resolved Production of Platinum Nanoparticles in Metallosupramolecular Polymers. Journal of the American Chemical Society, 2020, 142, 342-348.	6.6	7
56	Inkjetâ€Printed TiO ₂ /Fullerene Composite Films for Planar Perovskite Solar Cells. Helvetica Chimica Acta, 2020, 103, e2000044.	1.0	6
57	Interfacial Effect between Aluminum-Based Complex Hydrides and Nickel-Containing Porous Carbon Sheets. ACS Applied Energy Materials, 2020, 3, 9685-9695.	2.5	6
58	3D reconstruction of curvilinear structures with stereo matching deep convolutional neural networks. Ultramicroscopy, 2022, 234, 113460.	0.8	5
59	Intercalation makes the difference with TiS2: Boosting electrocatalytic water oxidation activity through Co intercalation. Journal of Materials Research, 2018, 33, 528-537.	1.2	4
60	Nanoprecipitates in single-crystal molybdenum-alloy nanopillars detected by TEM and atom probe tomography. Scripta Materialia, 2013, 69, 41-44.	2.6	2
61	3D <i>vs.</i> turbostratic: controlling metal–organic framework dimensionality <i>via N</i> -heterocyclic carbene chemistry. Chemical Science, 2022, 13, 6418-6428.	3.7	2
62	Computer Vision Techniques Applied to the Reconstruction of the 3-D Structure Dislocations. Microscopy and Microanalysis, 2017, 23, 102-103.	0.2	0
63	Lamellar carbon-aluminosilicate nanocomposites with macroscopic orientation. Nanoscale, 2021, 13, 13650-13657.	2.8	0
64	Metallosupramolecular polymers as precursors for platinum nanocomposites. Polymer Chemistry, 2022, 13, 1880-1890.	1.9	0
65	Enhancing MOF performance through the Introduction of polymer guests. , 0, , .		O