

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1189153/publications.pdf Version: 2024-02-01

VONC

#	Article	IF	CITATIONS
1	A novel structure of scalable air-cathode without Nafion and Pt by rolling activated carbon and PTFE as catalyst layer in microbial fuel cells. Water Research, 2012, 46, 5777-5787.	11.3	383
2	Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide. Nature Catalysis, 2019, 2, 889-898.	34.4	234
3	Fabrication of TiO ₂ –Bi ₂ WO ₆ Binanosheet for Enhanced Solar Photocatalytic Disinfection of <i>E. coli</i> : Insights on the Mechanism. ACS Applied Materials & Interfaces, 2016, 8, 6841-6851.	8.0	200
4	Biochar accelerates PAHs biodegradation in petroleum-polluted soil by biostimulation strategy. Journal of Hazardous Materials, 2018, 343, 276-284.	12.4	198
5	Highly Efficient Antibacterial and Pb(II) Removal Effects of Ag-CoFe ₂ O ₄ -GO Nanocomposite. ACS Applied Materials & Interfaces, 2015, 7, 10576-10586.	8.0	187
6	Phytoremediation for co-contaminated soils of benzo[a]pyrene (B[a]P) and heavy metals using ornamental plant Tagetes patula. Journal of Hazardous Materials, 2011, 186, 2075-2082.	12.4	180
7	Effects of Graphene Oxide and Oxidized Carbon Nanotubes on the Cellular Division, Microstructure, Uptake, Oxidative Stress, and Metabolic Profiles. Environmental Science & Technology, 2015, 49, 10825-10833.	10.0	177
8	Superior Antibacterial Activity of Fe ₃ O ₄ -TiO ₂ Nanosheets under Solar Light. ACS Applied Materials & Interfaces, 2015, 7, 21875-21883.	8.0	170
9	Potential hyperaccumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China. Environmental Geology, 2007, 51, 1043-1048.	1.2	158
10	Molecular Mechanisms of Developmental Toxicity Induced by Graphene Oxide at Predicted Environmental Concentrations. Environmental Science & Technology, 2017, 51, 7861-7871.	10.0	158
11	Systemic Stress and Recovery Patterns of Rice Roots in Response to Graphene Oxide Nanosheets. Environmental Science & Technology, 2017, 51, 2022-2030.	10.0	157
12	Machine learning predicts the functional composition of the protein corona and the cellular recognition of nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10492-10499.	7.1	152
13	Technologies towards antibiotic resistance genes (ARGs) removal from aquatic environment: A critical review. Journal of Hazardous Materials, 2021, 411, 125148.	12.4	134
14	Rice ingestion is a major pathway for human exposure to organophosphate flame retardants (OPFRs) in China. Journal of Hazardous Materials, 2016, 318, 686-693.	12.4	130
15	Graphene oxide amplifies the phytotoxicity of arsenic in wheat. Scientific Reports, 2014, 4, 6122.	3.3	127
16	Cadmium adsorption to clay-microbe aggregates: Implications for marine heavy metals cycling. Geochimica Et Cosmochimica Acta, 2020, 290, 124-136.	3.9	124
17	Envelopment–Internalization Synergistic Effects and Metabolic Mechanisms of Graphene Oxide on Single-Cell <i>Chlorella vulgaris</i> Are Dependent on the Nanomaterial Particle Size. ACS Applied Materials & Interfaces, 2015, 7, 18104-18112.	8.0	123
18	Mitochondria-targeted TPP-MoS2 with dual enzyme activity provides efficient neuroprotection through M1/M2 microglial polarization in an Alzheimer's disease model. Biomaterials, 2020, 232, 119752.	11.4	123

YON

#	Article	IF	CITATIONS
19	Specific nanotoxicity of graphene oxide during zebrafish embryogenesis. Nanotoxicology, 2016, 10, 1-11.	3.0	112
20	Ultra-trace graphene oxide in a water environment triggers Parkinson's disease-like symptoms and metabolic disturbance in zebrafish larvae. Biomaterials, 2016, 93, 83-94.	11.4	112
21	Size Matters: Nano-Biochar Triggers Decomposition and Transformation Inhibition of Antibiotic Resistance Genes in Aqueous Environments. Environmental Science & Technology, 2020, 54, 8821-8829.	10.0	111
22	Mitigation in Multiple Effects of Graphene Oxide Toxicity in Zebrafish Embryogenesis Driven by Humic Acid. Environmental Science & Technology, 2015, 49, 10147-10154.	10.0	104
23	Effect of fertilizer amendments on phytoremediation of Cd-contaminated soil by a newly discovered hyperaccumulator Solanum nigrum L Journal of Hazardous Materials, 2010, 176, 269-273.	12.4	102
24	Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells. Biosensors and Bioelectronics, 2016, 85, 135-141.	10.1	101
25	Sand amendment enhances bioelectrochemical remediation of petroleum hydrocarbon contaminated soil. Chemosphere, 2015, 141, 62-70.	8.2	99
26	Knowledge gaps between nanotoxicological research and nanomaterial safety. Environment International, 2016, 94, 8-23.	10.0	95
27	Enhanced biodegradation of aged petroleum hydrocarbons in soils by glucose addition in microbial fuel cells. Journal of Chemical Technology and Biotechnology, 2016, 91, 267-275.	3.2	86
28	Degradation mechanisms of sulfamethoxazole and its induction of bacterial community changes and antibiotic resistance genes in a microbial fuel cell. Bioresource Technology, 2019, 289, 121632.	9.6	86
29	Microbial electrolysis cell as an emerging versatile technology: a review on its potential application, advance and challenge. Journal of Chemical Technology and Biotechnology, 2019, 94, 1697-1711.	3.2	82
30	Widespread Occurrence of Benzotriazoles and Benzothiazoles in Tap Water: Influencing Factors and Contribution to Human Exposure. Environmental Science & Technology, 2016, 50, 2709-2717.	10.0	81
31	Surfactants selectively reallocated the bacterial distribution in soil bioelectrochemical remediation of petroleum hydrocarbons. Journal of Hazardous Materials, 2018, 344, 23-32.	12.4	80
32	Exposure to PbSe Nanoparticles and Male Reproductive Damage in a Rat Model. Environmental Science & Technology, 2019, 53, 13408-13416.	10.0	80
33	Role of extracellular polymeric substances on the behavior and toxicity of silver nanoparticles and ions to green algae Chlorella vulgaris. Science of the Total Environment, 2019, 660, 1182-1190.	8.0	78
34	Leaching of graphene oxide nanosheets in simulated soil and their influences on microbial communities. Journal of Hazardous Materials, 2021, 404, 124046.	12.4	78
35	Extended petroleum hydrocarbon bioremediation in saline soil using Pt-free multianodes microbial fuel cells. RSC Advances, 2014, 4, 59803-59808.	3.6	76
36	Integrating Biolayer Interferometry, Atomic Force Microscopy, and Density Functional Theory Calculation Studies on the Affinity between Humic Acid Fractions and Graphene Oxide. Environmental Science & Technology, 2019, 53, 3773-3781.	10.0	73

#	Article	IF	CITATIONS
37	Ambient Water and Visible-Light Irradiation Drive Changes in Graphene Morphology, Structure, Surface Chemistry, Aggregation, and Toxicity. Environmental Science & Technology, 2015, 49, 3410-3418.	10.0	72
38	Quantitative analyses of relationships between ecotoxicological effects and combined pollution. Science in China Series C: Life Sciences, 2004, 47, 332.	1.3	71
39	Joint chemical flushing of soils contaminated with petroleum hydrocarbons. Environment International, 2005, 31, 835-839.	10.0	71
40	Novel hydrated graphene ribbon unexpectedly promotes aged seed germination and root differentiation. Scientific Reports, 2014, 4, 3782.	3.3	70
41	Acetate limitation selects Geobacter from mixed inoculum and reduces polysaccharide in electroactive biofilm. Water Research, 2020, 177, 115776.	11.3	70
42	Microbial Fuel Cells for Organicâ€Contaminated Soil Remedial Applications: A Review. Energy Technology, 2017, 5, 1156-1164.	3.8	69
43	Phytoremediation of contaminated soils using ornamental plants. Environmental Reviews, 2018, 26, 43-54.	4.5	69
44	Nanotoxicological effects and transcriptome mechanisms of wheat (Triticum aestivum L.) under stress of polystyrene nanoplastics. Journal of Hazardous Materials, 2022, 423, 127241.	12.4	69
45	Effects of cadmium on uptake and translocation of nutrient elements in different welsh onion (Allium fistulosum L.) cultivars. Food Chemistry, 2016, 194, 101-110.	8.2	68
46	Graphene oxide regulates the bacterial community and exhibits property changes in soil. RSC Advances, 2015, 5, 27009-27017.	3.6	64
47	Environmental Transformations and Algal Toxicity of Single-Layer Molybdenum Disulfide Regulated by Humic Acid. Environmental Science & Technology, 2018, 52, 2638-2648.	10.0	64
48	The Phases of WS ₂ Nanosheets Influence Uptake, Oxidative Stress, Lipid Peroxidation, Membrane Damage, and Metabolism in Algae. Environmental Science & Technology, 2018, 52, 13543-13552.	10.0	63
49	Salinity and Conductivity Amendment of Soil Enhanced the Bioelectrochemical Degradation of Petroleum Hydrocarbons. Scientific Reports, 2016, 6, 32861.	3.3	61
50	Uptake Pathway, Translocation, and Isomerization of Hexabromocyclododecane Diastereoisomers by Wheat in Closed Chambers. Environmental Science & Technology, 2016, 50, 2652-2659.	10.0	61
51	Solar-assisted fabrication of dimpled 2H-MoS2 membrane for highly efficient water desalination. Water Research, 2020, 170, 115367.	11.3	60
52	Bacterial community changes and antibiotic resistance gene quantification in microbial electrolysis cells during long-term sulfamethoxazole treatment. Bioresource Technology, 2019, 294, 122170.	9.6	57
53	Identification of weed species with hyperaccumulative characteristics of heavy metals*. Progress in Natural Science: Materials International, 2004, 14, 495-503.	4.4	56
54	Season, sex and age as modifiers in the association of psychosis morbidity with air pollutants: A rising problem in a Chinese metropolis. Science of the Total Environment, 2016, 541, 928-933.	8.0	56

#	Article	IF	CITATIONS
55	Dissolved Oxygen and Visible Light Irradiation Drive the Structural Alterations and Phytotoxicity Mitigation of Single-Layer Molybdenum Disulfide. Environmental Science & Technology, 2019, 53, 7759-7769.	10.0	56
56	Nationwide Distribution of Per- and Polyfluoroalkyl Substances in Outdoor Dust in Mainland China From Eastern to Western Areas. Environmental Science & Technology, 2016, 50, 3676-3685.	10.0	54
57	Simultaneous removal and high tolerance of norfloxacin with electricity generation in microbial fuel cell and its antibiotic resistance genes quantification. Bioresource Technology, 2020, 304, 122984.	9.6	54
58	Carbonâ€supported perovskite oxides as oxygen reduction reaction catalyst in single chambered microbial fuel cells. Journal of Chemical Technology and Biotechnology, 2013, 88, 774-778.	3.2	53
59	Human Health Risk Assessment Based on Toxicity Characteristic Leaching Procedure and Simple Bioaccessibility Extraction Test of Toxic Metals in Urban Street Dust of Tianjin, China. PLoS ONE, 2014, 9, e92459.	2.5	53
60	Photoaging enhanced the adverse effects of polyamide microplastics on the growth, intestinal health, and lipid absorption in developing zebrafish. Environment International, 2022, 158, 106922.	10.0	53
61	Screening Priority Factors Determining and Predicting the Reproductive Toxicity of Various Nanoparticles. Environmental Science & Technology, 2018, 52, 9666-9676.	10.0	49
62	Biomonitoring persistent organic pollutants in the atmosphere with mosses: Performance and application. Environment International, 2014, 66, 28-37.	10.0	48
63	Nanocolloids in Natural Water: Isolation, Characterization, and Toxicity. Environmental Science & Technology, 2018, 52, 4850-4860.	10.0	48
64	Integrating multi-omics and regular analyses identifies the molecular responses of zebrafish brains to graphene oxide: Perspectives in environmental criteria. Ecotoxicology and Environmental Safety, 2019, 180, 269-279.	6.0	47
65	Hyperaccumulative Characteristics of Weed Species to Heavy Metals. Water, Air, and Soil Pollution, 2008, 192, 173-181.	2.4	45
66	Simultaneous Analysis of Selected Typical Antibiotics in Manure by Microwave-Assisted Extraction and LC–MS n. Chromatographia, 2010, 71, 217-223.	1.3	43
67	Combined phyto-microbial-electrochemical system enhanced the removal of petroleum hydrocarbons from soil: A profundity remediation strategy. Journal of Hazardous Materials, 2021, 420, 126592.	12.4	43
68	Effects of Soil/Solution Ratios and Cation Types on Adsorption and Desorption of Tetracycline in Soils. Soil Science Society of America Journal, 2010, 74, 1553-1561.	2.2	42
69	Efficient decolorization of azo dye wastewater with polyaniline/graphene modified anode in microbial electrochemical systems. Journal of Hazardous Materials, 2022, 421, 126740.	12.4	42
70	Uptake and translocation of benzo[a]pyrene (B[a]P) in two ornamental plants and dissipation in soil. Ecotoxicology and Environmental Safety, 2016, 124, 74-81.	6.0	40
71	Microbial electro-Fenton: A promising system for antibiotics resistance genes degradation and energy generation. Science of the Total Environment, 2020, 699, 134160.	8.0	40
72	Bioâ€electroâ€Fenton systems for sustainable wastewater treatment: mechanisms, novel configurations, recent advances, LCA and challenges. An updated review. Journal of Chemical Technology and Biotechnology, 2020, 95, 2083-2097.	3.2	40

#	Article	IF	CITATIONS
73	Characteristics of cadmium accumulation and tolerance in Rorippa globosa (Turcz.) Thell., a species with some characteristics of cadmium hyperaccumulation. Plant Growth Regulation, 2010, 61, 67-74.	3.4	38
74	Enhanced photocatalytic performance of N-nitrosodimethylamine on TiO2 nanotube based on the role of singlet oxygen. Chemosphere, 2015, 120, 521-526.	8.2	38
75	Graphene Oxide Inhibits Antibiotic Uptake and Antibiotic Resistance Gene Propagation. ACS Applied Materials & Interfaces, 2016, 8, 33165-33174.	8.0	38
76	Applications and challenges of elemental sulfur, nanosulfur, polymeric sulfur, sulfur composites, and plasmonic nanostructures. Critical Reviews in Environmental Science and Technology, 2019, 49, 2314-2358.	12.8	37
77	Lake Chemodiversity Driven by Natural and Anthropogenic Factors. Environmental Science & Technology, 2022, 56, 5910-5919.	10.0	37
78	Impact of fire on soil gross nitrogen transformations in forest ecosystems. Journal of Soils and Sediments, 2014, 14, 1030-1040.	3.0	35
79	Swift Acid Rain Sensing by Synergistic Rhizospheric Bioelectrochemical Responses. ACS Sensors, 2018, 3, 1424-1430.	7.8	34
80	Tolerance and accumulation of the trace metals zinc, copper and cadmium in three populations of the polychaete <i>Nereis diversicolor</i> . Journal of the Marine Biological Association of the United Kingdom, 2003, 83, 65-72.	0.8	33
81	Cadmium Accumulation in Relation to Organic Acids and Nonprotein Thiols in Leaves of the Recently Found Cd Hyperaccumulator Rorippa globosa and the Cd-accumulating Plant Rorippa islandica. Journal of Plant Growth Regulation, 2011, 30, 83-91.	5.1	33
82	Characterization of the effects of trace concentrations of graphene oxide on zebrafish larvae through proteomic and standard methods. Ecotoxicology and Environmental Safety, 2018, 159, 221-231.	6.0	32
83	Responses and roles of roots, microbes, and degrading genes in rhizosphere during phytoremediation of petroleum hydrocarbons contaminated soil. International Journal of Phytoremediation, 2019, 21, 1161-1169.	3.1	32
84	Graphene oxide quantum dots stimulate indigenous bacteria to remove oil contamination. Journal of Hazardous Materials, 2019, 366, 694-702.	12.4	32
85	Influence of Size and Phase on the Biodegradation, Excretion, and Phytotoxicity Persistence of Single-Layer Molybdenum Disulfide. Environmental Science & Technology, 2020, 54, 12295-12306.	10.0	32
86	Phytoremediation of petroleum hydrocarbon-contaminated saline-alkali soil by wild ornamental Iridaceae species. International Journal of Phytoremediation, 2017, 19, 300-308.	3.1	31
87	Simultaneous sulfamethoxazole degradation with electricity generation by microbial fuel cells using Ni-MOF-74 as cathode catalysts and quantification of antibiotic resistance genes. Environmental Research, 2021, 197, 111054.	7.5	31
88	G-CNTs/PVDF mixed matrix membranes with improved antifouling properties and filtration performance. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	6.0	30
89	Nanocolloids, but Not Humic Acids, Augment the Phytotoxicity of Single-Layer Molybdenum Disulfide Nanosheets. Environmental Science & Technology, 2021, 55, 1122-1133.	10.0	30
90	A novel and high performance activated carbon air-cathode with decreased volume density and catalyst layer invasion for microbial fuel cells. RSC Advances, 2014, 4, 42577-42580.	3.6	29

#	Article	IF	CITATIONS
91	The key role of Geobacter in regulating emissions and biogeochemical cycling of soil-derived greenhouse gases. Environmental Pollution, 2020, 266, 115135.	7.5	29
92	Nano–Ag: Environmental applications and perspectives. Science of the Total Environment, 2022, 829, 154644.	8.0	29
93	Effect of different initial low pH conditions on biogas production, composition, and shift in the aceticlastic methanogenic population. Bioresource Technology, 2019, 289, 121579.	9.6	28
94	Natural Nanocolloids Mediate the Phytotoxicity of Graphene Oxide. Environmental Science & Technology, 2020, 54, 4865-4875.	10.0	28
95	Bioremediation: A review of applications and problems to be resolved*. Progress in Natural Science: Materials International, 2004, 14, 937-944.	4.4	27
96	Assessment of potential soybean cadmium excluder cultivars at different concentrations of Cd in soils. Journal of Environmental Sciences, 2015, 35, 108-114.	6.1	27
97	Strategies and knowledge gaps for improving nanomaterial biocompatibility. Environment International, 2017, 102, 177-189.	10.0	27
98	Effects of litter quality and quantity on chemical changes during eucalyptus litter decomposition in subtropical Australia. Plant and Soil, 2019, 442, 65-78.	3.7	27
99	δ 15N of soil nitrogen pools and their dynamics under decomposing leaf litters in a suburban native forest subject to repeated prescribed burning in southeast Queensland, Australia. Journal of Soils and Sediments, 2015, 15, 1063-1074.	3.0	26
100	Nanoholes Regulate the Phytotoxicity of Single-Layer Molybdenum Disulfide. Environmental Science & Technology, 2019, 53, 13938-13948.	10.0	26
101	Integrating metabolomics and physiological analysis to investigate the toxicological mechanisms of sewage sludge-derived biochars to wheat. Ecotoxicology and Environmental Safety, 2019, 185, 109664.	6.0	26
102	Predicting nanotoxicity by an integrated machine learning and metabolomics approach. Environmental Pollution, 2020, 267, 115434.	7.5	26
103	Adsorption–desorption characteristics and pollution behavior of reactive X-3B red dye in four Chinese typical soils. Journal of Soils and Sediments, 2010, 10, 1324-1334.	3.0	25
104	Comparisons of Microwave-Assisted Extraction, Simultaneous Distillation-Solvent Extraction, Soxhlet Extraction and Ultrasound Probe for Polycyclic Musks in Sediments: Recovery, Repeatability, Matrix Effects and Bioavailability. Chromatographia, 2011, 74, 489-495.	1.3	25
105	Direct and Indirect Genotoxicity of Graphene Family Nanomaterials on DNA—A Review. Nanomaterials, 2021, 11, 2889.	4.1	25
106	Title is missing!. Water, Air, and Soil Pollution, 2002, 133, 145-160.	2.4	24
107	Graphene oxide enters the rice roots and disturbs the endophytic bacterial communities. Ecotoxicology and Environmental Safety, 2020, 192, 110304.	6.0	24
108	Impact of algal extracellular polymeric substances on the environmental fate and risk of molybdenum disulfide in aqueous media. Water Research, 2021, 205, 117708.	11.3	24

#	Article	IF	CITATIONS
109	In Situ Representation of Soil/Sediment Conductivity Using Electrochemical Impedance Spectroscopy. Sensors, 2016, 16, 625.	3.8	23
110	Unignorable toxicity of formaldehyde on electroactive bacteria in bioelectrochemical systems. Environmental Research, 2020, 183, 109143.	7.5	23
111	Polycyclic musks in the environment: A review of their concentrations and distribution, ecological effects and behavior, current concerns and future prospects. Critical Reviews in Environmental Science and Technology, 2021, 51, 323-377.	12.8	22
112	Widely distributed nanocolloids in water regulate the fate and risk of graphene oxide. Water Research, 2019, 165, 114987.	11.3	21
113	WS ₂ Nanosheets at Noncytotoxic Concentrations Enhance the Cytotoxicity of Organic Pollutants by Disturbing the Plasma Membrane and Efflux Pumps. Environmental Science & Technology, 2020, 54, 1698-1709.	10.0	21
114	Culture techniques and growth characteristics of Dinophysis acuminata and its prey. Chinese Journal of Oceanology and Limnology, 2010, 28, 1230-1239.	0.7	20
115	Effect of soil pH and organic matter on desorption hysteresis of chlorimuron-ethyl in two typical Chinese soils. Journal of Soils and Sediments, 2011, 11, 552-561.	3.0	20
116	Hexavalent chromium amplifies the developmental toxicity of graphene oxide during zebrafish embryogenesis. Ecotoxicology and Environmental Safety, 2021, 208, 111487.	6.0	19
117	Prochloraz alone or in combination with nano-CuO promotes the conjugative transfer of antibiotic resistance genes between Escherichia coli in pure water. Journal of Hazardous Materials, 2022, 424, 127761.	12.4	19
118	Toxic effects of wastewater from various phases of monosodium glutamate production on seed germination and root elongation of crops. Frontiers of Environmental Science and Engineering in China, 2007, 1, 114-119.	0.8	18
119	Tolerance, uptake and removal of nitrobenzene by a newly-found remediation species Mirabilis jalapa L Chemosphere, 2012, 86, 994-1000.	8.2	18
120	Root exudates as natural ligands that alter the properties of graphene oxide and environmental implications thereof. RSC Advances, 2015, 5, 17615-17622.	3.6	18
121	Environmental decomposition and remodeled phytotoxicity of framework-based nanomaterials. Journal of Hazardous Materials, 2022, 422, 126846.	12.4	18
122	Polycyclic Aromatic Hydrocarbon (PAH) Contamination in the Urban Topsoils of Shenyang, China. Soil and Sediment Contamination, 2012, 21, 901-917.	1.9	17
123	Characterization and toxicity of nanoscale fragments in wastewater treatment plant effluent. Science of the Total Environment, 2018, 626, 1332-1341.	8.0	17
124	Response of soil enzyme activity and soil bacterial community to PCB dissipation across different soils. Chemosphere, 2021, 283, 131229.	8.2	17
125	Formation of S defects in MoS ₂ -coated wood for high-efficiency seawater desalination. Environmental Science: Nano, 2021, 8, 2069-2080.	4.3	16
126	Promoted Relationship of Cardiovascular Morbidity with Air Pollutants in a Typical Chinese Urban Area. PLoS ONE, 2014, 9, e108076.	2.5	15

#	Article	IF	CITATIONS
127	Distribution and temporal variation of PCBs and PAHs in soils and sediments from an e-waste dismantling site in China. Environmental Earth Sciences, 2015, 74, 2925-2935.	2.7	14
128	The nanomaterial-induced bystander effects reprogrammed macrophage immune function and metabolic profile. Nanotoxicology, 2020, 14, 1137-1155.	3.0	14
129	Graphene oxide nanosheets mitigate the developmental toxicity of TDCIPP in zebrafish via activating the mitochondrial respiratory chain and energy metabolism. Science of the Total Environment, 2020, 727, 138486.	8.0	14
130	Surface atomic arrangement of nanomaterials affects nanotoxicity. Nanotoxicology, 2021, 15, 114-130.	3.0	14
131	Recent advances in improving the remediation performance of microbial electrochemical systems for contaminated soil and sediments. Critical Reviews in Environmental Science and Technology, 2023, 53, 137-160.	12.8	14
132	Using Soil Available P and Activities of Soil Dehydrogenase and Phosphatase as Indicators for Biodegradation of Organophosphorus Pesticide Methamidophos and Glyphosate. Soil and Sediment Contamination, 2011, 20, 688-701.	1.9	13
133	Assessment of soil organic contamination in a typical petrochemical industry park in China. Environmental Science and Pollution Research, 2015, 22, 10227-10234.	5.3	13
134	Influence of Fe addition on the accumulation of oxytetracycline in rice seedlings (Oryza sativa L.) growing in hydroponic and soil culture. Journal of Soils and Sediments, 2018, 18, 1958-1970.	3.0	13
135	Screening of safe soybean cultivars for cadmium contaminated fields. Scientific Reports, 2020, 10, 12965.	3.3	13
136	Extracellular polymeric substances mediate defect generation and phytotoxicity of single-layer MoS2. Journal of Hazardous Materials, 2022, 429, 128361.	12.4	13
137	Cellular proliferation and differentiation induced by single-layer molybdenum disulfide and mediation mechanisms of proteins via the Akt-mTOR-p70S6K signaling pathway. Nanotoxicology, 2017, 11, 1-13.	3.0	12
138	A highly sensitive bioelectrochemical toxicity sensor and its evaluation using immediate current attenuation. Science of the Total Environment, 2021, 766, 142646.	8.0	12
139	Bioelectrochemical degradation of petroleum hydrocarbons: A critical review and future perspectives. Environmental Pollution, 2022, 306, 119344.	7.5	12
140	Growth responses of the newly-discovered Cd-hyperaccumulator Rorippa globosa and its accumulation characteristics of Cd and As under joint stress of Cd and As. Frontiers of Environmental Science and Engineering in China, 2007, 1, 107-113.	0.8	11
141	Joint effects of Penta-BDE and heavy metals on Daphnia magna survival, its antioxidant enzyme activities and lipid peroxidation. Frontiers of Environmental Science and Engineering in China, 2011, 5, 99-110.	0.8	11
142	Effects of changed litter inputs on soil labile carbon and nitrogen pools in a eucalyptus-dominated forest of southeast Queensland, Australia. Journal of Soils and Sediments, 2019, 19, 1661-1671.	3.0	11
143	Methodology for Derivation of Water Quality Criteria for Protecting Aquatic Environment and Future Development. Critical Reviews in Environmental Science and Technology, 2012, 42, 2471-2503.	12.8	10
144	Single and joint effects of HHCB and cadmium on zebrafish (Danio rerio) in feculent water containing bedloads. Frontiers of Environmental Science and Engineering, 2012, 6, 360-372.	6.0	10

#	Article	IF	CITATIONS
145	Herbicide occurrence in riparian soils and its transporting risk in the Songhua River Basin, China. Agronomy for Sustainable Development, 2013, 33, 777-785.	5.3	10
146	Effect of Anthracene (ANT) on Growth, Microcystin (MC) Production and Expression of MC Synthetase (mcy) Genes in Microcystis aeruginosa. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	10
147	Adsorption behavior of Sudan I-IV on a coastal soil and their forecasted biogeochemical cycles. Environmental Science and Pollution Research, 2017, 24, 10749-10758.	5.3	10
148	Vegetation alleviate the negative effects of graphene oxide on benzo[a]pyrene dissipation and the associated soil bacterial community. Chemosphere, 2020, 253, 126725.	8.2	10
149	Integrating omics and traditional analyses to profile the synergistic toxicity of graphene oxide and triphenyl phosphate. Environmental Pollution, 2020, 263, 114473.	7.5	10
150	Mechanism of Remediation of Cadmium-Contaminated Soil With Low-Energy Plant Snapdragon. Frontiers in Chemistry, 2020, 8, 222.	3.6	10
151	Effects of Cadmium and Mixed Heavy Metals on Rice Growth in Liaoning, China. Soil and Sediment Contamination, 2003, 12, 851-864.	1.9	9
152	Sequestration and Distribution Characteristics of Cd(II) by <i>Microcystis aeruginosa</i> and Its Role in Colony Formation. BioMed Research International, 2016, 2016, 1-7.	1.9	9
153	The Forms, Distribution, and Risk Assessment of Sulfonamide Antibiotics in the Manure–Soil–Vegetable System of Feedlot Livestock. Bulletin of Environmental Contamination and Toxicology, 2020, 105, 790-797.	2.7	9
154	Sources of Antibiotic Resistant Bacteria (ARB) and Antibiotic Resistance Genes (ARGs) in the Soil: A Review of the Spreading Mechanism and Human Health Risks. Reviews of Environmental Contamination and Toxicology, 2021, 256, 121-153.	1.3	9
155	Mitigation Effects and Associated Mechanisms of Environmentally Relevant Thiols on the Phytotoxicity of Molybdenum Disulfide Nanosheets. Environmental Science & Technology, 2022, 56, 9556-9568.	10.0	9
156	Anthropogenic impacts on the biodiversity and anti-interference ability of microbial communities in lakes. Science of the Total Environment, 2022, 820, 153264.	8.0	8
157	Adsorption Characteristics and Influencing Factors of Chlorimuronâ€Ethyl in Two Typical Chinese Soils. Soil Science Society of America Journal, 2011, 75, 1394-1401.	2.2	7
158	Temporal changes in horsebean bioavailability and accumulation after removing extractable oxytetracycline fractions in soils. RSC Advances, 2015, 5, 32572-32579.	3.6	7
159	Deriving Soil Quality Criteria of Chromium Based on Species Sensitivity Distribution Methodology. Toxics, 2021, 9, 58.	3.7	7
160	Derived regional soil-environmental quality criteria of metals based on Anhui soil-crop systems at the regulated level. Science of the Total Environment, 2022, 825, 154060.	8.0	7
161	Intoxication and biochemical responses of freshwater snail Bellamya aeruginosa to ethylbenzene. Environmental Science and Pollution Research, 2017, 24, 189-198.	5.3	6
162	Metal status in soils within a developing education park: Potential risk of land development. Land Degradation and Development, 2020, 31, 430-438.	3.9	6

#	Article	IF	CITATIONS
163	Growth Responses and Accumulation Characteristics of Three Ornamental Plants to Sn Contamination in Soil. Agriculture (Switzerland), 2021, 11, 205.	3.1	6
164	Amperometric Determination of Chemical Oxygen Demand via the Functional Combination of Three Digestion Types. Electroanalysis, 2010, 22, 2947-2959.	2.9	5
165	Response of soil enzymes, functional bacterial groups, and microbial communities exposed to sudan I-IV. Ecotoxicology and Environmental Safety, 2018, 166, 328-335.	6.0	5
166	Conversion relationships between environmental quality criteria of water/air and soil. Science China Earth Sciences, 2018, 61, 1781-1791.	5.2	5
167	Potential use of <scp><i>Impatiens balsamina</i></scp> L. for bioremediation of lead and polychlorinated biphenyl contaminated soils. Land Degradation and Development, 2021, 32, 3773-3784.	3.9	5
168	Impact of sulfhydryl ligands on the transformation of silver ions by molybdenum disulfide and their combined toxicity to freshwater algae. Journal of Hazardous Materials, 2022, 435, 128953.	12.4	5
169	Interactive effects of chlorimuron-ethyl and copper(II) on their sorption and desorption on two typical Chinese soils. European Journal of Soil Science, 2011, 62, 882-890.	3.9	4
170	Soil bacterial communities respond differently to graphene oxide and reduced graphene oxide after 90 days of exposure. Soil Ecology Letters, 2020, 2, 176-179.	4.5	4
171	Magnetic Field-Guided MoS ₂ /WS ₂ Heterolayered Nanofilm Regulates Cell Behavior and Gene Expression. ACS Applied Nano Materials, 2021, 4, 10828-10835.	5.0	4
172	Effects of Cadmium and Mixed Heavy Metals on Rice Growth in Liaoning, China. Soil and Sediment Contamination, 2003, 12, 851-864.	1.9	3
173	Effect of Environmentally Friendly Amendment on a Newly Found Accumulator Kalimeris integrifolia Turcz. ex DC. Phytoremediating Cd-Contaminated Soil. Water, Air, and Soil Pollution, 2011, 218, 479-486.	2.4	3
174	Exploration on Optimized Control Way of D-Amino Acid for Efficiently Mitigating Membrane Biofouling of Membrane Bioreactor. Membranes, 2021, 11, 612.	3.0	3
175	Synthesis of ppy–MgO–CNT nanocomposites for multifunctional applications. RSC Advances, 2021, 11, 36379-36390.	3.6	3
176	Cytochrome P450 monooxygenase specific activity reduction in wheat Triticum aestivum induced by soil roxithromycin stress. Frontiers of Environmental Science and Engineering, 2016, 10, 270-275.	6.0	2
177	Quantum dots bind nanosheet to promote nanomaterial stability and resist endotoxin-induced fibrosis and PM2.5-induced pneumonia. Ecotoxicology and Environmental Safety, 2022, 234, 113420.	6.0	2
178	A risk factor analysis of municipal domestic refuse landfills using a reactor with high water input. Waste Management and Research, 2003, 21, 383-390.	3.9	1
179	Adsorption-desorption of hydrophilic contaminants rhodamine B with/without Cd2+ on a coastal soil: implications for mariculture and seafood safety. Environmental Science and Pollution Research, 2018, 25, 34636-34643.	5.3	1
180	Variation in soil geochemical properties and microbial communities in areas under land developed for educational use (university and other campuses). Land Degradation and Development, 2021, 32, 173-182.	3.9	1

#	Article	IF	CITATIONS
181	Bioavailability and toxicity variation of benzo(a)pyrene in three soil–wheat systems: Indicators of soil quality. Land Degradation and Development, 2021, 32, 3847-3855.	3.9	1
182	Reply to the â€~Comment on "Graphene oxide regulates the bacterial community and exhibits property changes in soilâ€â€™ by C. Forstner, P. Wang, P. M. Kopittke and P. G. Dennis, RSC Adv., 2016, 6 , DOI: 10.1039/C5RA26329H. RSC Advances, 2016, 6, 53688-53689.	3.6	0