Paul Tudzynski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11891451/publications.pdf

Version: 2024-02-01

128	10,223	51 h-index	97
papers	citations		g-index
131	131	131	7443
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The putative H3K36 demethylase BcKDM1 affects virulence, stress responses and photomorphogenesis in Botrytis cinerea. Fungal Genetics and Biology, 2019, 123, 14-24.	0.9	23
2	<i>Brachypodium distachyon</i> as alternative model host system for the ergot fungus <i>Claviceps purpurea</i> . Molecular Plant Pathology, 2018, 19, 1005-1011.	2.0	8
3	Manipulation of cytokinin level in the ergot fungus Claviceps purpurea emphasizes its contribution to virulence. Current Genetics, 2018, 64, 1303-1319.	0.8	22
4	Molecular analysis of the early interaction between the grapevine flower and <scp><i>Botrytis cinerea</i></scp> reveals that prompt activation of specific host pathways leads to fungus quiescence. Plant, Cell and Environment, 2017, 40, 1409-1428.	2.8	44
5	Cross-talk of the biotrophic pathogen Claviceps purpurea and its host Secale cereale. BMC Genomics, 2017, 18, 273.	1.2	19
6	Localization of ergot alkaloids in sclerotia of Claviceps purpurea by matrix-assisted laser desorption/ionization mass spectrometry imaging. Analytical and Bioanalytical Chemistry, 2017, 409, 1221-1230.	1.9	9
7	The Protein Disulfide Isomerase of Botrytis cinerea: An ER Protein Involved in Protein Folding and Redox Homeostasis Influences NADPH Oxidase Signaling Processes. Frontiers in Microbiology, 2017, 8, 960.	1.5	37
8	Bclqg1, a fungal IQGAP homolog, interacts with NADPH oxidase, MAP kinase and calcium signaling proteins and regulates virulence and development in <scp><i>B</i></scp> <i>otrytis cinerea</i> Molecular Microbiology, 2016, 101, 281-298.	1.2	29
9	Functional characterization of the first filamentous fungal <scp>tRNA</scp> â€isopentenyltransferase and its role in the virulence of <i>Claviceps purpurea</i> . New Phytologist, 2016, 211, 980-992.	3.5	45
10	Reactive oxygen species in development and infection processes. Seminars in Cell and Developmental Biology, 2016, 57, 138-146.	2.3	74
11	Update on Nox function, site of action and regulation in Botrytis cinerea. Fungal Biology and Biotechnology, 2016, 3, 8.	2.5	21
12	Identification and characterization of the ergochrome gene cluster in the plant pathogenic fungus Claviceps purpurea. Fungal Biology and Biotechnology, 2016, 3, 2.	2.5	28
13	Chasing stress signals – Exposure to extracellular stimuli differentially affects the redox state of cell compartments in the wild type and signaling mutants of Botrytis cinerea. Fungal Genetics and Biology, 2016, 90, 12-22.	0.9	16
14	The Epipolythiodiketopiperazine Gene Cluster in Claviceps purpurea: Dysfunctional Cytochrome P450 Enzyme Prevents Formation of the Previously Unknown Clapurines. PLoS ONE, 2016, 11, e0158945.	1.1	9
15	<i>De novo</i> biosynthesis of cytokinins in the biotrophic fungus <scp><i>C</i></scp> <i>laviceps purpurea</i> . Environmental Microbiology, 2015, 17, 2935-2951.	1.8	74
16	Unraveling the Function of the Response Regulator BcSkn7 in the Stress Signaling Network of Botrytis cinerea. Eukaryotic Cell, 2015, 14, 636-651.	3.4	34
17	<pre><scp>BcNoxD</scp>, a putative <scp>ER</scp> protein, is a new component of the <scp>NADPH</scp> oxidase complex in <scp><i>B</i></scp><i>otrytis cinerea</i>. Molecular Microbiology, 2015, 95, 988-1005.</pre>	1.2	71
18	Functional Analysis of BcBem1 and Its Interaction Partners in Botrytis cinerea: Impact on Differentiation and Virulence. PLoS ONE, 2014, 9, e95172.	1.1	34

#	Article	IF	CITATIONS
19	Biosynthetic Pathways of Ergot Alkaloids. Toxins, 2014, 6, 3281-3295.	1.5	106
20	Ergot Alkaloids. Fungal Biology, 2014, , 303-316.	0.3	8
21	The Transcription Factor BcLTF1 Regulates Virulence and Light Responses in the Necrotrophic Plant Pathogen Botrytis cinerea. PLoS Genetics, 2014, 10, e1004040.	1.5	130
22	Small-GTPase-Associated Signaling by the Guanine Nucleotide Exchange Factors CpDock180 and CpCdc24, the GTPase Effector CpSte20, and the Scaffold Protein CpBem1 in Claviceps purpurea. Eukaryotic Cell, 2014, 13, 470-482.	3.4	16
23	A new and reliable method for live imaging and quantification of reactive oxygen species in Botrytis cinerea. Fungal Genetics and Biology, 2014, 71, 68-75.	0.9	19
24	Redox Systems in <i>Botrytis cinerea</i> : Impact on Development and Virulence. Molecular Plant-Microbe Interactions, 2014, 27, 858-874.	1.4	80
25	Molecular Characterization of the NADPH Oxidase Complex in the Ergot Fungus <i>Claviceps purpurea</i> : CpNox2 and CpPls1 Are Important for a Balanced Host-Pathogen Interaction. Molecular Plant-Microbe Interactions, 2013, 26, 1151-1164.	1.4	32
26	Plant-Symbiotic Fungi as Chemical Engineers: Multi-Genome Analysis of the Clavicipitaceae Reveals Dynamics of Alkaloid Loci. PLoS Genetics, 2013, 9, e1003323.	1.5	344
27	Involvement of Botrytis cinerea Small GTPases BcRAS1 and BcRAC in Differentiation, Virulence, and the Cell Cycle. Eukaryotic Cell, 2013, 12, 1609-1618.	3.4	73
28	Assessing the Effects of Light on Differentiation and Virulence of the Plant Pathogen Botrytis cinerea: Characterization of the White Collar Complex. PLoS ONE, 2013, 8, e84223.	1.1	135
29	The NADPH Oxidase Complexes in Botrytis cinerea: Evidence for a Close Association with the ER and the Tetraspanin Pls1. PLoS ONE, 2013, 8, e55879.	1.1	75
30	The Mitogen-Activated Protein Kinase BcSak1 of <i>Botrytis cinerea</i> Is Required for Pathogenic Development and Has Broad Regulatory Functions Beyond Stress Response. Molecular Plant-Microbe Interactions, 2012, 25, 802-816.	1.4	77
31	Germling fusion via conidial anastomosis tubes in the grey mould Botrytis cinerea requires NADPH oxidase activity. Fungal Biology, 2012, 116, 379-387.	1.1	82
32	Morphogenesis and Infection in Botrytis cinerea. Topics in Current Genetics, 2012, , 225-241.	0.7	24
33	Reactive oxygen species generation in fungal development and pathogenesis. Current Opinion in Microbiology, 2012, 15, 653-659.	2.3	112
34	BcAtf1, a global regulator, controls various differentiation processes and phytotoxin production in <i>Botrytis cinerea</i> . Molecular Plant Pathology, 2012, 13, 704-718.	2.0	85
35	Redoxâ€sensitive GFP2: use of the genetically encoded biosensor of the redox status in the filamentous fungus <i>Botrytis cinerea</i> . Molecular Plant Pathology, 2012, 13, 935-947.	2.0	32
36	The <i>Botrytis cinerea</i> Reg1 Protein, a Putative Transcriptional Regulator, Is Required for Pathogenicity, Conidiogenesis, and the Production of Secondary Metabolites. Molecular Plant-Microbe Interactions, 2011, 24, 1074-1085.	1.4	85

3

#	Article	IF	CITATIONS
37	Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genetics, 2011, 7, e1002230.	1.5	902
38	The small GTPase BcCdc42 affects nuclear division, germination and virulence of the gray mold fungus Botrytis cinerea. Fungal Genetics and Biology, 2011, 48, 1012-1019.	0.9	48
39	Reactive Oxygen Species in Phytopathogenic Fungi: Signaling, Development, and Disease. Annual Review of Phytopathology, 2011, 49, 369-390.	3.5	448
40	The <i>FRP1</i> Fâ€box gene has different functions in sexuality, pathogenicity and metabolism in three fungal pathogens. Molecular Plant Pathology, 2011, 12, 548-563.	2.0	22
41	Regulation of Pathogenic Spore Germination by CgRac1 in the Fungal Plant Pathogen Colletotrichum gloeosporioides. Eukaryotic Cell, 2011, 10, 1122-1130.	3.4	41
42	Alkaloid Cluster Gene <i>ccsA</i> of the Ergot Fungus <i>Claviceps purpurea</i> Encodes Chanoclavine I Synthase, a Flavin Adenine Dinucleotide-Containing Oxidoreductase Mediating the Transformation of <i>N</i> -Methyl-Dimethylallyltryptophan to Chanoclavine I. Applied and Environmental Microbiology, 2010, 76, 1822-1830.	1.4	49
43	Deletion of Mid1, a putative stretch-activated calcium channel in Claviceps purpurea, affects vegetative growth, cell wall synthesis and virulence. Microbiology (United Kingdom), 2009, 155, 3922-3933.	0.7	34
44	Ergot: from witchcraft to biotechnology. Molecular Plant Pathology, 2009, 10, 563-577.	2.0	124
45	Expressed sequence tags from the flower pathogen <i>Claviceps purpurea</i> . Molecular Plant Pathology, 2009, 10, 665-684.	2.0	8
46	The ergot alkaloid gene cluster: Functional analyses and evolutionary aspects. Phytochemistry, 2009, 70, 1822-1832.	1.4	69
47	Does <i>Botrytis cinerea</i> Ignore H ₂ O ₂ -Induced Oxidative Stress During Infection? Characterization of <i>Botrytis</i> Activator Protein 1. Molecular Plant-Microbe Interactions, 2009, 22, 987-998.	1.4	148
48	Botrytis cinerea: Molecular Aspects of a Necrotrophic Life Style. , 2009, , 29-50.		20
49	The NADPH oxidase Cpnox1 is required for full pathogenicity of the ergot fungus <i>Claviceps purpurea</i> . Molecular Plant Pathology, 2008, 9, 317-327.	2.0	89
50	The small GTPase Rac and the p21â€activated kinase Cla4 in <i>Claviceps purpurea</i> iinteraction and impact on polarity, development and pathogenicity. Molecular Microbiology, 2008, 68, 405-423.	1.2	84
51	Use of a nonhomologous end joining deficient strain (î"ku70) of the ergot fungus Claviceps purpurea for identification of a nonribosomal peptide synthetase gene involved in ergotamine biosynthesis. Fungal Genetics and Biology, 2008, 45, 35-44.	0.9	72
52	NADPH Oxidases Are Involved in Differentiation and Pathogenicity in <i>Botrytis cinerea</i> Molecular Plant-Microbe Interactions, 2008, 21, 808-819.	1.4	240
53	The cAMP-Dependent Signaling Pathway and Its Role in Conidial Germination, Growth, and Virulence of the Gray Mold <i>Botrytis cinerea</i> . Molecular Plant-Microbe Interactions, 2008, 21, 1443-1459.	1.4	103
54	BcSAK1, a Stress-Activated Mitogen-Activated Protein Kinase, Is Involved in Vegetative Differentiation and Pathogenicity in Botrytis cinerea. Eukaryotic Cell, 2007, 6, 211-221.	3.4	213

#	Article	IF	CITATIONS
55	Comparison of Ergot Alkaloid Biosynthesis Gene Clusters in <i>Claviceps</i> Species Indicates Loss of Late Pathway Steps in Evolution of <i>C. fusiformis</i> Applied and Environmental Microbiology, 2007, 73, 7185-7191.	1.4	54
56	Approaches to Molecular Genetics and Genomics of Botrytis. , 2007, , 53-66.		8
57	<i>Botrytis cinerea</i> : the cause of grey mould disease. Molecular Plant Pathology, 2007, 8, 561-580.	2.0	1,345
58	The histidine kinase CpHK2 has impact on spore germination, oxidative stress and fungicide resistance, and virulence of the ergot fungus Claviceps purpurea. Molecular Plant Pathology, 2007, 8, 653-665.	2.0	24
59	Phytohormones In Botrytis-Plant Interactions. , 2007, , 163-179.		25
60	Chapter 2 Ergot Alkaloids – Biology and Molecular Biology. The Alkaloids Chemistry and Biology, 2006, 63, 45-86.	0.8	184
61	Ethylene Sensing and Gene Activation in Botrytis cinerea: A Missing Link in Ethylene Regulation of Fungus-Plant Interactions?. Molecular Plant-Microbe Interactions, 2006, 19, 33-42.	1.4	97
62	In vitro pathogenicity assay for the ergot fungus Claviceps purpurea. Mycological Research, 2006, 110, 465-470.	2.5	22
63	Identification of the Cytochrome P450 Monooxygenase that Bridges the Clavine and Ergoline Alkaloid Pathways. ChemBioChem, 2006, 7, 645-652.	1.3	59
64	Identification of an Abscisic Acid Gene Cluster in the Grey Mold Botrytis cinerea. Applied and Environmental Microbiology, 2006, 72, 4619-4626.	1.4	131
65	The ergot alkaloid gene cluster in Claviceps purpurea: Extension of the cluster sequence and intra species evolution. Phytochemistry, 2005, 66, 1312-1320.	1.4	122
66	A CDC42 Homologue in Claviceps purpurea Is Involved in Vegetative Differentiation and Is Essential for Pathogenicity. Eukaryotic Cell, 2005, 4, 1228-1238.	3.4	53
67	The COT1 homologue CPCOT1 regulates polar growth and branching and is essential for pathogenicity in Claviceps purpurea. Fungal Genetics and Biology, 2005, 42, 107-118.	0.9	29
68	Functional Analysis of the Cytochrome P450 Monooxygenase Gene bcbot1 of Botrytis cinerea Indicates That Botrydial Is a Strain-Specific Virulence Factor. Molecular Plant-Microbe Interactions, 2005, 18, 602-612.	1.4	207
69	The P450 Monooxygenase BcABA1 Is Essential for Abscisic Acid Biosynthesis in Botrytis cinerea. Applied and Environmental Microbiology, 2004, 70, 3868-3876.	1.4	149
70	Functional analysis of H2O2-generating systems in Botrytis cinerea: the major Cu-Zn-superoxide dismutase (BCSOD1) contributes to virulence on French bean, whereas a glucose oxidase (BCGOD1) is dispensable. Molecular Plant Pathology, 2004, 5, 17-27.	2.0	208
71	Claviceps purpurea: molecular aspects of a unique pathogenic lifestyle. Molecular Plant Pathology, 2004, 5, 377-388.	2.0	92
72	CPTF1, a CREB-Like Transcription Factor, Is Involved in the Oxidative Stress Response in the Phytopathogen Claviceps purpurea and Modulates ROS Level in Its Host Secale cereale. Molecular Plant-Microbe Interactions, 2004, 17, 383-393.	1.4	78

#	Article	IF	Citations
73	Molecular Cloning and Analysis of the Ergopeptine Assembly System in the Ergot Fungus Claviceps purpurea. Chemistry and Biology, 2003, 10, 1281-1292.	6.2	99
74	Structural and functional analysis of an oligomeric hydrophobin gene from Claviceps purpurea. Molecular Plant Pathology, 2003, 4, 31-41.	2.0	17
75	Fungal Pathogenicity Genes. Applied Mycology and Biotechnology, 2003, , 187-212.	0.3	18
76	Molecular Aspects of Host–Pathogen Interactions and Ergot Alkaloid Biosynthesis in Claviceps. , 2003, , .		4
77	Polygalacturonase is a pathogenicity factor in the Claviceps purpurea/rye interaction. Fungal Genetics and Biology, 2002, 36, 176-186.	0.9	186
78	CPMK2, an SLT2-homologous mitogen-activated protein (MAP) kinase, is essential for pathogenesis of Claviceps purpureaon rye: evidence for a second conserved pathogenesis-related MAP kinase cascade in phytopathogenic fungi. Molecular Microbiology, 2002, 46, 305-318.	1.2	98
79	The major Cu,Zn SOD of the phytopathogen Claviceps purpurea is not essential for pathogenicity. Molecular Plant Pathology, 2002, 3, 9-22.	2.0	50
80	Ethylene biosynthesis in Botrytis cinerea. FEMS Microbiology Ecology, 2002, 40, 143-149.	1.3	25
81	Genetics of Phytopathology: Pathogenicity Factors and Signal Transduction in Plant-pathogenic Fungi. Progress in Botany Fortschritte Der Botanik, 2002, , 163-188.	0.1	5
82	The Contribution of Cell Wall Degrading Enzymes to Pathogenesis of Fungal Plant Pathogens. , 2002, , 341-358.		68
83	Pathogenic Development of Claviceps purpurea. , 2002, , .		2
84	The Role of G Protein Alpha Subunits in the Infection Process of the Gray Mold Fungus Botrytis cinerea. Molecular Plant-Microbe Interactions, 2001, 14, 1293-1302.	1.4	241
85	Infection Strategies of Botrytis cinerea and Related Necrotrophic Pathogens. , 2000, , 33-64.		115
86	Genetics of Phytopathology: Phytopathogenic Fungi: Genetic Aspects of Host-Pathogen Interaction. Progress in Botany Fortschritte Der Botanik, 2000, , 118-147.	0.1	3
87	Title is missing!. European Journal of Plant Pathology, 1999, 105, 273-283.	0.8	95
88	Claviceps sp. PRL 1980 (ATCC 26245), 59 and Pepty 695/ch-I: their true story. Mycological Research, 1999, 103, 1044-1048.	2.5	19
89	Immunogold localization of an extracellular \hat{l}^2 -1,3-glucanase of the ergot fungus Claviceps purpurea during infection of rye. Mycological Research, 1999, 103, 1103-1118.	2.5	15
90	Identification and characterization of a tri-partite hydrophobin from Claviceps fusiformis . A novel type of class II hydrophobin. FEBS Journal, 1999, 262, 377-385.	0.2	38

#	Article	IF	Citations
91	Cloning, Characterization, and Targeted Disruption of cpcat1, Coding for an in Planta Secreted Catalase of Claviceps purpurea. Molecular Plant-Microbe Interactions, 1998, 11, 772-783.	1.4	58
92	The Xylanolytic System of Claviceps purpurea: Cytological Evidence for Secretion of Xylanases in Infected Rye Tissue and Molecular Characterization of Two Xylanase Genes. Phytopathology, 1998, 88, 1020-1030.	1.1	69
93	Genetics of Plant Pathogenic Fungi. Progress in Botany Fortschritte Der Botanik, 1998, , 169-193.	0.1	10
94	Cel1, Probably Encoding a Cellobiohydrolase Lacking the Substrate Binding Domain, Is Expressed in the Initial Infection Phase of Claviceps purpurea on Secale cereale. Molecular Plant-Microbe Interactions, 1997, 10, 268-279.	1.4	33
95	Analysis of genetic diversity in Claviceps purpurea by RAPD markers. Mycological Research, 1997, 101, 1-6.	2.5	45
96	Genetics of Phytopathogenic Fungi. , 1996, , 235-252.		2
97	The Claviceps purpurea glyceraldehyde-3-phosphate dehydrogenase gene: cloning, characterization, and use for the improvement of a dominant selection system. Current Genetics, 1994, 25, 101-106.	0.8	44
98	Variations in ploidy among isolates of Botrytis cinerea: implications for genetic and molecular analyses. Current Genetics, 1994, 25, 445-450.	0.8	166
99	A DNA-polymerase-related reading frame (pol-r) in the mtDNA ofSecale cereale. Current Genetics, 1994, 25, 59-65.	0.8	14
100	Molecular genetics of pathogenic fungi: new horizons. Trends in Microbiology, 1994, 2, 429-430.	3.5	1
101	Studies on function and mobility of mitochondrial plasmids from Claviceps purpurea. Mycological Research, 1994, 98, 511-515.	2.5	6
102	Interaction between mitochondrial DNA and mitochondrial plasmids in Claviceps purpurea: analysis of plasmid-homologous sequences upstream of the IrRNA-gene. Current Genetics, 1993, 23, 315-322.	0.8	20
103	Molecular Genetics of Phytopathogenic Fungi. , 1993, , 358-372.		1
104	Characterization of an extracellular \hat{l}^2 -1,3-glucanase of Claviceps purpurea. Physiological and Molecular Plant Pathology, 1992, 40, 191-201.	1.3	17
105	Efficient transformation of Claviceps purpurea using pyrimidine auxotrophic mutants: cloning of the OMP decarboxylase gene. Molecular Genetics and Genomics, 1992, 234, 297-305.	2.4	48
106	Transcripts and translation products of a mitochondrial plasmid of Claviceps purpurea. Current Genetics, 1992, 21, 249-254.	0.8	23
107	Extranuclear Inheritance: Mitochondrial Genetics. , 1991, , 244-263.		4
108	Transformation of Claviceps purpurea using a bleomycin resistance gene. Applied Microbiology and Biotechnology, 1989, 30, 364-370.	1.7	31

#	Article	IF	CITATIONS
109	The linear mitochondrial plasmid pClK1 of the phytopathogenic fungus Claviceps purpurea may code for a DNA polymerase and an RNA polymerase. Molecular Genetics and Genomics, 1989, 217, 132-140.	2.4	87
110	Structural and functional analysis of mitochondrial plasmids in Claviceps purpurea. Molecular Genetics and Genomics, 1988, 214, 128-134.	2.4	47
111	Extrachromosomal genetics of Cephalosporium acremonium. Applied Microbiology and Biotechnology, 1986, 23, 280.	1.7	2
112	Extrachromosomal genetics of Claviceps purpurea. Current Genetics, 1986, 10, 463-467.	0.8	42
113	Linear Plasmids in the Phytopathogenic Fungus Claviceps Purpurea. , 1986, , 119-127.		3
114	Extrakaryotic Inheritance: Mitochondrial Genetics. , 1986, , 249-259.		9
115	Mitochondrial DNA for Gene Cloning in Eukaryotes. , 1985, , 403-416.		10
116	Extrachromosomal genetics of Claviceps purpurea. Current Genetics, 1983, 7, 145-150.	0.8	60
117	Nuclear association in yeast of a hybrid vector containing mitochondrial DNA. Current Genetics, 1983, 7, 165-166.	0.8	12
118	NUCLEAR-MITOCHONDRIAL INTERACTIONS CAUSE SENESCENCE IN THE FILAMENTOUS FUNGUS PODOSPORA ANSERINA. , 1983, , 251-258.		0
119	A BACTERIAL-MITOCHONDRIAL "SHUTTLE VECTOR―FOR CLONING IN PRO- AND EUKARYOTES. , 1983, , 566.		O
120	Development of a eukaryotic cloning system in Podospora anserina. Current Genetics, 1982, 6, 219-222.	0.8	32
121	Extrachromosomal genetics of Cephalosporium acremonium. Current Genetics, 1982, 6, 153-158.	0.8	36
122	Extranuclear Inheritance. , 1982, , 286-307.		0
123	Mitochondrial DNA and senescence in Podospora anserina. Current Genetics, 1981, 4, 83-83.	0.8	7
124	A model to explain senescence in the filamentous fungus Podospora anserina by the action of plasmid like DNA. Molecular Genetics and Genomics, 1980, 178, 213-216.	2.4	32
125	Extrakaryotic Inheritance. , 1980, , 214-233.		O
126	Chromosomal and extrachromosomal control of senescence in the ascomycete Podospora anserina. Molecular Genetics and Genomics, 1979, 173, 71-84.	2.4	86

Paul Tudzynski

#	Article	IF	CITATIONS
127	Evidence for plasmid like DNA in a filamentous fungus, the ascomycete Podospora anserina. Molecular Genetics and Genomics, 1978, 162, 341-343.	2.4	177
128	Inhibitors of mitochondrial function prevent senescence in the ascomycetePodospora anserina. Molecular Genetics and Genomics, 1977, 153, 111-113.	2.4	51