
Hani Atamna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11891079/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Specific PIWI-Interacting RNAs and Related Small Noncoding RNAs Are Associated With Ovarian Aging in Ames Dwarf (df/df) Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 1561-1570.	3.6	3
2	Profiling of tRNA Halves and YRNA Fragments in Serum and Tissue From Oral Squamous Cell Carcinoma Patients Identify Key Role of 5′ tRNA-Val-CAC-2-1 Half. Frontiers in Oncology, 2019, 9, 959.	2.8	18
3	Energy and Cellularâ€Defense Systems are Target for Antiâ€Senescence Activity of Methylene Blue. FASEB Journal, 2019, 33, 794.11.	0.5	0
4	Organ reserve, excess metabolic capacity, and aging. Biogerontology, 2018, 19, 171-184.	3.9	32
5	Data Mining of Small RNA-Seq Suggests an Association Between Prostate Cancer and Altered Abundance of 5′ Transfer RNA Halves in Seminal Fluid and Prostatic Tissues. Biomarkers in Cancer, 2018, 10, 1179299X1875954.	3.6	10
6	Curriculum mapping as a tool to facilitate curriculum development: a new School of Medicine experience. BMC Medical Education, 2018, 18, 185.	2.4	39
7	Caloric restriction impacts plasma microRNAs in rhesus monkeys. FASEB Journal, 2018, 32, 789.3.	0.5	0
8	Organ Reserve, Excess Metabolic Capacity, and Aging. FASEB Journal, 2018, 32, 536.24.	0.5	0
9	Caloric restriction impacts plasma micro <scp>RNA</scp> s in rhesus monkeys. Aging Cell, 2017, 16, 1200-1203.	6.7	27
10	[P1–110]: VARIATIONS IN THE AMINO ACIDS SEQUENCE OF AMYLOIDâ€Î²: AN OPPORTUNITY TO UNDERSTA ALZHEIMER's DISEASE. Alzheimer's and Dementia, 2017, 13, P283.	ND _{0.8}	0
11	MicroRNAs Circulate in the Hemolymph of <i>Drosophila</i> and Accumulate Relative to Tissue microRNAs in an Age-Dependent Manner. Genomics Insights, 2016, 9, GEI.S38147.	3.0	17
12	Circulating micro <scp>RNA</scp> signature of genotypeâ€byâ€age interactions in the longâ€lived <scp>A</scp> mes dwarf mouse. Aging Cell, 2015, 14, 1055-1066.	6.7	54
13	Circulating small non coding RNA signature in head and neck squamous cell carcinoma. Oncotarget, 2015, 6, 19246-19263.	1.8	89
14	Combined activation of the energy and cellular-defense pathways may explain the potent anti-senescence activity of methylene blue. Redox Biology, 2015, 6, 426-435.	9.0	28
15	ApoHRP-based assay to measure intracellular regulatory heme. Metallomics, 2015, 7, 309-321.	2.4	39
16	Acarbose, 17â€Î±â€estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell, 2014, 13, 273-282.	6.7	331
17	Deep Sequencing of Serum Small RNAs Identifies Patterns of 5′ tRNA Half and YRNA Fragment Expression Associated with Breast Cancer. Biomarkers in Cancer, 2014, 6, BIC.S20764.	3.6	144
18	5′ tRNA halves are present as abundant complexes in serum, concentrated in blood cells, and modulated by aging and calorie restriction. BMC Genomics, 2013, 14, 298.	2.8	204

ΗΑΝΙ ΑΤΑΜΝΑ

#	Article	IF	CITATIONS
19	5′-YRNA fragments derived by processing of transcripts from specific YRNA genes and pseudogenes are abundant in human serum and plasma. Physiological Genomics, 2013, 45, 990-998.	2.3	98
20	Deep sequencing identifies circulating mouse miRNAs that are functionally implicated in manifestations of aging and responsive to calorie restriction. Aging, 2013, 5, 130-141.	3.1	67
21	Mitochondrial pharmacology: Electron transport chain bypass as strategies to treat mitochondrial dysfunction. BioFactors, 2012, 38, 158-166.	5.4	50
22	Therapeutic Approaches to Delay the Onset of Alzheimer's Disease. Journal of Aging Research, 2011, 2011, 1-11.	0.9	8
23	Deep Sequencing Reveals Novel MicroRNAs and Regulation of MicroRNA Expression during Cell Senescence. PLoS ONE, 2011, 6, e20509.	2.5	73
24	Protective Role of Methylene Blue in Alzheimer's Disease via Mitochondria and Cytochrome c Oxidase. Journal of Alzheimer's Disease, 2010, 20, S439-S452.	2.6	112
25	Amino acids variations in Amyloid-β peptides, mitochondrial dysfunction, and new therapies for Alzheimer's disease. Journal of Bioenergetics and Biomembranes, 2009, 41, 457-464.	2.3	30
26	Human and rodent amyloid-β peptides differentially bind heme: Relevance to the human susceptibility to Alzheimer's disease. Archives of Biochemistry and Biophysics, 2009, 487, 59-65.	3.0	82
27	Gender and age-dependent differences in the mitochondrial apoptogenic pathway in Alzheimer's disease. Free Radical Biology and Medicine, 2008, 44, 2019-2025.	2.9	54
28	Methylene blue delays cellular senescence and enhances key mitochondrial biochemical pathways. FASEB Journal, 2008, 22, 703-712.	0.5	242
29	<i>Nâ€ŧertâ€butyl</i> hydroxylamine, a mitochondrial antioxidant, protects human retinal pigment epithelial cells from iron overload: relevance to macular degeneration. FASEB Journal, 2007, 21, 4077-4086.	0.5	30
30	Biotin Deficiency Inhibits Heme Synthesis and Impairs Mitochondria in Human Lung Fibroblasts. Journal of Nutrition, 2007, 137, 25-30.	2.9	42
31	Mechanisms of mitochondrial dysfunction and energy deficiency in Alzheimer's disease. Mitochondrion, 2007, 7, 297-310.	3.4	239
32	Heme binding to Amyloid-β peptide: Mechanistic role in Alzheimer's disease. Journal of Alzheimer's Disease, 2006, 10, 255-266.	2.6	74
33	Amyloid-β peptide binds with heme to form a peroxidase: Relationship to the cytopathologies of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3381-3386.	7.1	265
34	Mineral and vitamin deficiencies can accelerate the mitochondrial decay of aging. Molecular Aspects of Medicine, 2005, 26, 363-378.	6.4	94
35	Iron Accumulation during Cellular Senescence. Annals of the New York Academy of Sciences, 2004, 1019, 365-367.	3.8	77
36	A role for heme in Alzheimer's disease: Heme binds amyloid β and has altered metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11153-11158.	7.1	228

Ηανί Ατάμνα

#	Article	IF	CITATIONS
37	Heme, iron, and the mitochondrial decay of ageing. Ageing Research Reviews, 2004, 3, 303-318.	10.9	140
38	Delaying the mitochondrial decay of aging in the brain. Clinical Neuroscience Research, 2003, 2, 331-338.	0.8	13
39	Iron Accumulation During Cellular Senescence in Human FibroblastsIn Vitro. Antioxidants and Redox Signaling, 2003, 5, 507-516.	5.4	72
40	Heme deficiency may be a factor in the mitochondrial and neuronal decay of aging. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14807-14812.	7.1	210
41	The Role of Heme and Iron-Sulfur Clusters in Mitochondrial Biogenesis, Maintenance, and Decay with Age. Archives of Biochemistry and Biophysics, 2002, 397, 345-353.	3.0	104
42	Delaying Brain Mitochondrial Decay and Aging with Mitochondrial Antioxidants and Metabolites. Annals of the New York Academy of Sciences, 2002, 959, 133-166.	3.8	174
43	Heme Deficiency Selectively Interrupts Assembly of Mitochondrial Complex IV in Human Fibroblasts. Journal of Biological Chemistry, 2001, 276, 48410-48416.	3.4	149
44	N―t â€Butyl hydroxylamine is an antioxidant that reverses ageâ€related changes in mitochondria in vivo and in vitro. FASEB Journal, 2001, 15, 2196-2204.	0.5	48
45	N-t-Butyl Hydroxylamine, a Hydrolysis Product of α-Phenyl-N-t-butyl Nitrone, Is More Potent in Delaying Senescence in Human Lung Fibroblasts. Journal of Biological Chemistry, 2000, 275, 6741-6748.	3.4	130
46	The Malaria Parasite Supplies Glutathione to its Host Cell - Investigation of Glutathione Transport and Metabolism in Human Erythrocytes Infected with Plasmodium Falciparum. FEBS Journal, 1997, 250, 670-679.	0.2	129
47	Mode of antimalarial effect of methylene blue and some of its analogues on Plasmodium falciparum in culture and their inhibition of P. vinckei petteri and P. yoelii nigeriensis in vivo. Biochemical Pharmacology, 1996, 51, 693-700.	4.4	99
48	Heme Degradation in the Presence of Glutathione. Journal of Biological Chemistry, 1995, 270, 24876-24883.	3.4	197
49	Hexose-monophosphate shunt activity in intact Plasmodium falciparum-infected erythrocytes and in free parasites. Molecular and Biochemical Parasitology, 1994, 67, 79-89.	1.1	99
50	Origin of reactive oxygen species in erythrocytes infected with Plasmodium falciparum. Molecular and Biochemical Parasitology, 1993, 61, 231-241.	1.1	204