Sjoerd Hak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11886893/publications.pdf Version: 2024-02-01

SIDERD HAK

#	Article	IF	CITATIONS
1	Cyclic Arginine–Glycine–Aspartateâ€Đecorated Lipid Nanoparticle Targeting toward Inflammatory Lesions Involves Hitchhiking with Phagocytes. Advanced Science, 2021, 8, 2100370.	11.2	9
2	Simple and Robust Intravital Microscopy Procedures in Hybrid TIE2GFP-BALB/c Transgenic Mice. Molecular Imaging and Biology, 2020, 22, 486-493.	2.6	2
3	Trained Immunity-Promoting Nanobiologic Therapy Suppresses Tumor Growth and Potentiates Checkpoint Inhibition. Cell, 2020, 183, 786-801.e19.	28.9	101
4	Tumor Targeting by α _v l² ₃ -Integrin-Specific Lipid Nanoparticles Occurs <i>via</i> Phagocyte Hitchhiking. ACS Nano, 2020, 14, 7832-7846.	14.6	69
5	Probing myeloid cell dynamics in ischaemic heart disease by nanotracer hot-spot imaging. Nature Nanotechnology, 2020, 15, 398-405.	31.5	42
6	In vitro and in vivo evaluation of organic solvent-free injectable melatonin nanoformulations. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 152, 248-256.	4.3	17
7	Mononuclear but Not Polymorphonuclear Phagocyte Depletion Increases Circulation Times and Improves Mammary Tumor-Homing Efficiency of Donor Bone Marrow-Derived Monocytes. Cancers, 2019, 11, 1752.	3.7	5
8	Translating nanomedicines: Thinking beyond materials? A young investigator's reply to â€~The Novelty Bubble'. Journal of Controlled Release, 2018, 290, 138-140.	9.9	12
9	Nanoparticle Ligand-Decoration Procedures Affect in Vivo Interactions with Immune Cells. Molecular Pharmaceutics, 2018, 15, 5754-5761.	4.6	16
10	Labeling nanoparticles: Dye leakage and altered cellular uptake. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2017, 91, 760-766.	1.5	80
11	Realâ€Time Monitoring of Nanoparticle Formation by FRET Imaging. Angewandte Chemie, 2017, 129, 2969-2972.	2.0	7
12	Realâ€Time Monitoring of Nanoparticle Formation by FRET Imaging. Angewandte Chemie - International Edition, 2017, 56, 2923-2926.	13.8	27
13	Synthesis of gadolinium oxide nanodisks and gadolinium doped iron oxide nanoparticles for MR contrast agents. Journal of Materials Chemistry B, 2017, 5, 418-422.	5.8	33
14	Integrating nanomedicine and imaging. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20170110.	3.4	5
15	Augmenting drug–carrier compatibility improves tumour nanotherapy efficacy. Nature Communications, 2016, 7, 11221.	12.8	111
16	<scp>L</scp> â€DOPAâ€Coated Manganese Oxide Nanoparticles as Dual MRI Contrast Agents and Drugâ€Delivery Vehicles. Small, 2016, 12, 301-306.	10.0	78
17	Nanoparticleâ€stabilized microbubbles for multimodal imaging and drug delivery. Contrast Media and Molecular Imaging, 2015, 10, 356-366.	0.8	54
18	Transverse relaxivity of iron oxide nanocrystals clustered in nanoemulsions: Experiment and theory. Magnetic Resonance in Medicine, 2015, 74, 858-867.	3.0	11

Sjoerd Hak

#	Article	IF	CITATIONS
19	Nanoparticle delivery to the brain — By focused ultrasound and self-assembled nanoparticle-stabilized microbubbles. Journal of Controlled Release, 2015, 220, 287-294.	9.9	57
20	The Effects of oil-in-Water Nanoemulsion Polyethylene Glycol Surface Density on Intracellular Stability, Pharmacokinetics, and Biodistribution in Tumor Bearing Mice. Pharmaceutical Research, 2015, 32, 1475-1485.	3.5	17
21	Periodicity in tumor vasculature targeting kinetics of ligand-functionalized nanoparticles studied by dynamic contrast enhanced magnetic resonance imaging and intravital microscopy. Angiogenesis, 2014, 17, 93-107.	7.2	14
22	Near-Infrared Fluorescence Energy Transfer Imaging of Nanoparticle Accumulation and Dissociation Kinetics in Tumor-Bearing Mice. ACS Nano, 2013, 7, 10362-10370.	14.6	60
23	The Effect of Nanoparticle Polyethylene Glycol Surface Density on Ligand-Directed Tumor Targeting Studied <i>in Vivo</i> by Dual Modality Imaging. ACS Nano, 2012, 6, 5648-5658.	14.6	176
24	Intravital microscopy in window chambers: a unique tool to study tumor angiogenesis and delivery of nanoparticles. Angiogenesis, 2010, 13, 113-130.	7.2	56
25	A high relaxivity Gd(III)DOTA-DSPE-based liposomal contrast agent for magnetic resonance imaging. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 72, 397-404.	4.3	88
26	Multimodality nanotracers for cardiovascular applications. Nature Clinical Practice Cardiovascular Medicine, 2008, 5, S103-S111.	3.3	48