Kaisa K Ivaska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1188675/publications.pdf Version: 2024-02-01

KAIGA K WAGKA

#	Article	IF	CITATIONS
1	Age-Progressive and Gender-Dependent Bone Phenotype in Mice Lacking Both Ebf1 and Ebf2 in Prrx1-Expressing Mesenchymal Cells. Calcified Tissue International, 2022, 110, 746-758.	3.1	3
2	Bone Turnover Marker Profiling and Fracture Risk in Older Women: Fracture Risk from Age 75 to 90. Calcified Tissue International, 2022, 111, 288-299.	3.1	4
3	Effects of FGFR inhibitors TKI258, BCJ398 and AZD4547 on breast cancer cells in 2D, 3D and tissue explant cultures. Cellular Oncology (Dordrecht), 2021, 44, 205-218.	4.4	8
4	Serum and Urinary Osteocalcin in Healthy 7- to 19-Year-Old Finnish Children and Adolescents. Frontiers in Pediatrics, 2021, 9, 610227.	1.9	6
5	Guidelines for Biobanking of Bone Marrow Adipose Tissue and Related Cell Types: Report of the Biobanking Working Group of the International Bone Marrow Adiposity Society. Frontiers in Endocrinology, 2021, 12, 744527.	3.5	11
6	Bone Marrow Metabolism Is Impaired in Insulin Resistance and Improves After Exercise Training. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e4290-e4303.	3.6	7
7	Recombinant Antibodies with Unique Specificities Allow for Sensitive and Specific Detection of Uncarboxylated Osteocalcin in Human Circulation. Calcified Tissue International, 2020, 107, 529-542.	3.1	3
8	Human Bone Marrow Adipose Tissue is a Metabolically Active and Insulin-Sensitive Distinct Fat Depot. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 2300-2310.	3.6	28
9	Dovitinib dilactic acid reduces tumor growth and tumor-induced bone changes in an experimental breast cancer bone growth model. Journal of Bone Oncology, 2019, 16, 100232.	2.4	7
10	Role of fibroblast growth factor receptors (FGFR) and FGFR like-1 (FGFRL1) in mesenchymal stromal cell differentiation to osteoblasts and adipocytes. Molecular and Cellular Endocrinology, 2018, 461, 194-204.	3.2	32
11	Testicular Function and Bone in Young Men with Severe Childhood-Onset Obesity. Hormone Research in Paediatrics, 2018, 89, 442-449.	1.8	7
12	Low free 25-hydroxyvitamin D and high vitamin D binding protein and parathyroid hormone in obese Caucasians. A complex association with bone?. PLoS ONE, 2018, 13, e0192596.	2.5	17
13	Changes in bone metabolism after bariatric surgery by gastric bypass or sleeve gastrectomy. Bone, 2017, 95, 47-54.	2.9	83
14	Obese young adults exhibit lower total and lower free serum 25â€hydroxycholecalciferol in a randomized vitamin D intervention. Clinical Endocrinology, 2016, 85, 378-385.	2.4	28
15	Bone mineral density is increased after a 16-week resistance training intervention in elderly women with decreased muscle strength. European Journal of Endocrinology, 2016, 175, 571-582.	3.7	26
16	The effects of acute hyperinsulinemia on bone metabolism. Endocrine Connections, 2015, 4, 155-162.	1.9	32
17	Increased Body Adiposity and Serum Leptin Concentrations in Very Long-Term Adult Male Survivors of Childhood Acute Lymphoblastic Leukemia. Hormone Research in Paediatrics, 2015, 84, 108-115.	1.8	12
18	Suppressed Bone Turnover in Obesity: A Link to Energy Metabolism? A Case-Control Study. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 2155-2163.	3.6	59

KAISA K IVASKA

#	Article	IF	CITATIONS
19	High Adiposity and Serum Leptin Accompanied by Altered Bone Turnover Markers in Severe Juvenile Idiopathic Arthritis. Journal of Rheumatology, 2014, 41, 2474-2481.	2.0	11
20	Inactivation of the androgen receptor in bone-forming cells leads to trabecular bone loss in adult female mice. BoneKEy Reports, 2013, 2, 440.	2.7	28
21	Total and Carboxylated Osteocalcin Associate with Insulin Levels in Young Adults Born with Normal or Very Low Birth Weight. PLoS ONE, 2013, 8, e63036.	2.5	9
22	Serum Osteocalcin Is Not Associated with Glucose but Is Inversely Associated with Leptin across Generations of Nondiabetic Women. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 4106-4114.	3.6	44
23	Tactile/kinesthetic stimulation (TKS) increases tibial speed of sound and urinary osteocalcin (U-MidOC) Tj ETQq1	1 0.78431	4 _{.rg} BT /Ove
24	Polymorphisms in the Inflammatory Genes CIITA, CLEC16A and IFNG Influence BMD, Bone Loss and Fracture in Elderly Women. PLoS ONE, 2012, 7, e47964.	2.5	14
25	Urinary osteocalcin and serum pro-C-type natriuretic peptide predict linear catch-up growth in infants. Journal of Bone and Mineral Research, 2012, 27, 1528-1535.	2.8	9
26	The Effect of Oral Glucose Tolerance Test on Serum Osteocalcin and Bone Turnover Markers in Young Adults. Calcified Tissue International, 2012, 90, 90-95.	3.1	35
27	Bone turnover markers and prediction of fracture: A prospective follow-up study of 1040 elderly women for a mean of 9 years. Journal of Bone and Mineral Research, 2010, 25, 393-403.	2.8	123
28	Use of Bone Turnover Markers in Osteoporosis. Clinical Reviews in Bone and Mineral Metabolism, 2010, 8, 1-14.	0.8	13
29	<i>Osteocalcin</i> gene polymorphisms influence concentration of serum osteocalcin and enhance fracture identification. Journal of Bone and Mineral Research, 2010, 25, 1392-1399.	2.8	23
30	Polymorphisms in the macrophage migration inhibitory factor gene and bone loss in postmenopausal women. Bone, 2010, 47, 424-429.	2.9	19
31	Bone turnover markers are correlated with quantitative ultrasound of the calcaneus: 5-year longitudinal data. Osteoporosis International, 2009, 20, 1225-1232.	3.1	14
32	Bone turnover markers are correlated with total skeletal uptake of 99mTc-methylene diphosphonate (99mTc-MDP). BMC Medical Physics, 2009, 9, 3.	2.4	9
33	Overexpression of cathepsin K accelerates the resorption cycle and osteoblast differentiation in vitro. Bone, 2009, 44, 717-728.	2.9	22
34	Urinary osteocalcin and other markers of bone metabolism: the effect of risedronate therapy. Scandinavian Journal of Clinical and Laboratory Investigation, 2008, 68, 459-463.	1.2	9
35	Serial Assessment of Serum Bone Metabolism Markers Identifies Women with the Highest Rate of Bone Loss and Osteoporosis Risk. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 2622-2632.	3.6	55
36	Effect of Fracture on Bone Turnover Markers: A Longitudinal Study Comparing Marker Levels Before and After Injury in 113 Elderly Women. Journal of Bone and Mineral Research, 2007, 22, 1155-1164.	2.8	143

KAISA K IVASKA

#	Article	IF	CITATIONS
37	Prediction of bone loss using biochemical markers of bone turnover. Osteoporosis International, 2007, 18, 1297-1305.	3.1	70
38	Calcification and cellularity in human aortic heart valve tissue determine the differentiation of bone-marrow-derived cells. Journal of Molecular and Cellular Cardiology, 2006, 41, 642-649.	1.9	18
39	Associations Between Homocysteine, Bone Turnover, BMD, Mortality, and Fracture Risk in Elderly Women. Journal of Bone and Mineral Research, 2006, 22, 127-134.	2.8	103
40	Serum TRACP 5b Is a Useful Marker for Monitoring Alendronate Treatment: Comparison With Other Markers of Bone Turnover. Journal of Bone and Mineral Research, 2005, 20, 1804-1812.	2.8	120
41	Urinary Osteocalcin as a Marker of Bone Metabolism. Clinical Chemistry, 2005, 51, 618-628.	3.2	73
42	Urinary Osteocalcin Is a Useful Marker for Monitoring the Effect of Alendronate Therapy. Clinical Chemistry, 2005, 51, 2362-2365.	3.2	14
43	Biochemical markers of bone turnover are influenced by recently sustained fracture. Bone, 2005, 36, 786-792.	2.9	53
44	Serum Estradiol, Testosterone, and Sex Hormone-Binding Globulin as Regulators of Peak Bone Mass and Bone Turnover Rate in Young Finnish Men. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 3785-3789.	3.6	66
45	Release of Intact and Fragmented Osteocalcin Molecules from Bone Matrix during Bone Resorption in Vitro. Journal of Biological Chemistry, 2004, 279, 18361-18369.	3.4	166
46	Development of Sensitive Immunoassays for Free and Total Human Glandular Kallikrein 2. Clinical Chemistry, 2004, 50, 1607-1617.	3.2	47
47	Osteoclast-Derived Serum Tartrate-Resistant Acid Phosphatase 5b in Albers-Schol^nberg Disease (Type II) Tj ETQo	1 <u>1 0</u> .784 3.2	4314 rgBT /○ 1000 BT /○
48	Biochemical Markers of Bone Metabolism and Prediction of Fracture in Elderly Women. Journal of Bone and Mineral Research, 2003, 19, 386-393.	2.8	228
49	Osteoblast recruitment from stem cells does not decrease by age at late adulthood. Biochemical and Biophysical Research Communications, 2003, 311, 1008-1013.	2.1	116
50	Identification of novel proteolytic forms of osteocalcin in human urine. Biochemical and Biophysical Research Communications, 2003, 306, 973-980.	2.1	25
51	Obese young adults exhibit lower total and lower free serum 25-hydroxycholecalciferol in a randomized vitamin D intervention. Bone Abstracts, 0, , .	0.0	1