Michael Siegel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11884592/publications.pdf

Version: 2024-02-01

471509 501196 35 778 17 28 citations h-index g-index papers 37 37 37 1083 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Superconducting nanowire single-photon detector with 3D-printed free-form microlenses. Optics Express, 2021, 29, 27708.	3.4	10
2	Wafer-level uniformity of atomic-layer-deposited niobium nitride thin films for quantum devices. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, 052401.	2.1	11
3	Characterization of a Photon-Number Resolving SNSPD Using Poissonian and Sub-Poissonian Light. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	9
4	Magnetic-Field Enhancement of Performance of Superconducting Nanowire Single-Photon Detector. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	1
5	Fully On-Chip Single-Photon Hanbury-Brown and Twiss Experiment on a Monolithic Semiconductor–Superconductor Platform. Nano Letters, 2018, 18, 6892-6897.	9.1	61
6	Timing jitter in photon detection by straight superconducting nanowires: Effect of magnetic field and photon flux. Physical Review B, 2018, 98, .	3.2	20
7	Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires. Physical Review B, 2017, 96, .	3.2	43
8	Operation of Superconducting Nanowire Single-Photon Detectors Embedded in Lumped-Element Resonant Circuits. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.	1.7	12
9	Degradation in aluminum resonant optical rod antennas. Materials Research Society Symposia Proceedings, 2015, 1728, 10.	0.1	0
10	Superconducting single-photon detectors integrated with diamond nanophotonic circuits. Light: Science and Applications, 2015, 4, e338-e338.	16.6	60
11	Coupled T-Shaped Optical Antennas with Two Resonances Localized in a Common Nanogap. ACS Photonics, 2015, 2, 1644-1651.	6.6	21
12	THz spectroscopy of superconducting ultrathin films. , 2014, , .		O
13	Real-time multi-pixel readout of superconducting nanowire single-photon detectors. , 2014, , .		О
14	Magnetic field stimulated enhancement of the barrier for vortex penetration in bended bridges of thin TaN films. Physica C: Superconductivity and Its Applications, 2014, 503, 58-61.	1.2	3
15	Electrodynamics of the Superconducting State in Ultra-Thin Films at THz Frequencies. IEEE Transactions on Terahertz Science and Technology, 2013, 3, 269-280.	3.1	52
16	Linear and Nonlinear Optical Characterization of Aluminum Nanoantennas. Nano Letters, 2013, 13, 1535-1540.	9.1	35
17	Effect of the Wire Width and Magnetic Field on the Intrinsic Detection Efficiency of Superconducting Nanowire Single-Photon Detectors. IEEE Transactions on Applied Superconductivity, 2013, 23, 2200205-2200205.	1.7	9
18	Temperature-Dependence of Detection Efficiency in NbN and TaN SNSPD. IEEE Transactions on Applied Superconductivity, 2013, 23, 2300505-2300505.	1.7	27

#	Article	IF	Citations
19	Orthogonal sequencing multiplexer for superconducting nanowire single-photon detectors with RSFQ electronics readout circuit. Optics Express, 2012, 20, 28683.	3.4	25
20	Superconducting single-photon counting system for optical experiments requiring time-resolution in the picosecond range. Review of Scientific Instruments, 2012, 83, 123103.	1.3	8
21	Dependence of count rate on magnetic field in superconducting thin-film TaN single-photon detectors. Physical Review B, 2012, 86, .	3.2	31
22	Critical current density in thin superconducting TaN film structures. Physica C: Superconductivity and Its Applications, 2012, 479, 176-178.	1.2	9
23	Gold nanoantenna resonance diagnostics via transversal particle plasmon luminescence. Optics Express, 2011, 19, 3686.	3.4	12
24	Coupled Nanoantenna Plasmon Resonance Spectra from Two-Photon Laser Excitation. Nano Letters, 2010, 10, 4161-4165.	9.1	46
25	Highly localized non-linear optical white-light response at nanorod ends from non-resonant excitation. Nanoscale, 2010, 2, 1018.	5.6	12
26	Intrinsic quantum efficiency and electro-thermal model of a superconducting nanowire single-photon detector. Journal of Modern Optics, 2009, 56, 345-351.	1.3	27
27	Nanoengineering and characterization of gold dipole nanoantennas with enhanced integrated scattering properties. Nanotechnology, 2009, 20, 425203.	2.6	39
28	Technology and Performance of THz Hot-Electron Bolometer Mixers. IEEE Transactions on Applied Superconductivity, 2009, 19, 269-273.	1.7	5
29	A Novel Analytical Model of Resonance Effects of Log-Periodic Planar Antennas. IEEE Transactions on Antennas and Propagation, 2009, 57, 3482-3488.	5.1	10
30	Superconductor-to-Semiconductor Interface Circuit for High Data Rates. IEEE Transactions on Applied Superconductivity, 2009, 19, 28-34.	1.7	22
31	Terahertz Performance of Integrated Lens Antennas With a Hot-Electron Bolometer. IEEE Transactions on Microwave Theory and Techniques, 2007, 55, 239-247.	4.6	106
32	Spectral Sensitivity and Spectral Resolution of Superconducting Single-Photon Detectors. IEEE Transactions on Applied Superconductivity, 2007, 17, 298-301.	1.7	21
33	Fluctuations and dark count rates in superconducting NbN single-photon detectors. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 1668-1673.	0.8	9
34	Spectral response of an infrared superconducting quantum detector. , 2004, , .		2
35	Dynamics of the response to microwave radiation in YBa2Cu3O7â^'x hot-electron bolometer mixers. Applied Physics Letters, 2001, 79, 1906-1908.	3.3	20