
## **Michael Siegel**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11884592/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Terahertz Performance of Integrated Lens Antennas With a Hot-Electron Bolometer. IEEE Transactions on Microwave Theory and Techniques, 2007, 55, 239-247.        | 4.6  | 106       |
| 2  | Fully On-Chip Single-Photon Hanbury-Brown and Twiss Experiment on a Monolithic<br>Semiconductor–Superconductor Platform. Nano Letters, 2018, 18, 6892-6897.      | 9.1  | 61        |
| 3  | Superconducting single-photon detectors integrated with diamond nanophotonic circuits. Light:<br>Science and Applications, 2015, 4, e338-e338.                   | 16.6 | 60        |
| 4  | Electrodynamics of the Superconducting State in Ultra-Thin Films at THz Frequencies. IEEE<br>Transactions on Terahertz Science and Technology, 2013, 3, 269-280. | 3.1  | 52        |
| 5  | Coupled Nanoantenna Plasmon Resonance Spectra from Two-Photon Laser Excitation. Nano Letters, 2010, 10, 4161-4165.                                               | 9.1  | 46        |
| 6  | Physical mechanisms of timing jitter in photon detection by current-carrying superconducting nanowires. Physical Review B, 2017, 96, .                           | 3.2  | 43        |
| 7  | Nanoengineering and characterization of gold dipole nanoantennas with enhanced integrated scattering properties. Nanotechnology, 2009, 20, 425203.               | 2.6  | 39        |
| 8  | Linear and Nonlinear Optical Characterization of Aluminum Nanoantennas. Nano Letters, 2013, 13,<br>1535-1540.                                                    | 9.1  | 35        |
| 9  | Dependence of count rate on magnetic field in superconducting thin-film TaN single-photon<br>detectors. Physical Review B, 2012, 86, .                           | 3.2  | 31        |
| 10 | Intrinsic quantum efficiency and electro-thermal model of a superconducting nanowire single-photon detector. Journal of Modern Optics, 2009, 56, 345-351.        | 1.3  | 27        |
| 11 | Temperature-Dependence of Detection Efficiency in NbN and TaN SNSPD. IEEE Transactions on Applied Superconductivity, 2013, 23, 2300505-2300505.                  | 1.7  | 27        |
| 12 | Orthogonal sequencing multiplexer for superconducting nanowire single-photon detectors with RSFQ electronics readout circuit. Optics Express, 2012, 20, 28683.   | 3.4  | 25        |
| 13 | Superconductor-to-Semiconductor Interface Circuit for High Data Rates. IEEE Transactions on Applied<br>Superconductivity, 2009, 19, 28-34.                       | 1.7  | 22        |
| 14 | Spectral Sensitivity and Spectral Resolution of Superconducting Single-Photon Detectors. IEEE<br>Transactions on Applied Superconductivity, 2007, 17, 298-301.   | 1.7  | 21        |
| 15 | Coupled T-Shaped Optical Antennas with Two Resonances Localized in a Common Nanogap. ACS<br>Photonics, 2015, 2, 1644-1651.                                       | 6.6  | 21        |
| 16 | Dynamics of the response to microwave radiation in YBa2Cu3O7â^'x hot-electron bolometer mixers.<br>Applied Physics Letters, 2001, 79, 1906-1908.                 | 3.3  | 20        |
| 17 | Timing jitter in photon detection by straight superconducting nanowires: Effect of magnetic field and photon flux. Physical Review B, 2018, 98, .                | 3.2  | 20        |
| 18 | Highly localized non-linear optical white-light response at nanorod ends from non-resonant<br>excitation. Nanoscale, 2010, 2, 1018.                              | 5.6  | 12        |

MICHAEL SIEGEL

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Gold nanoantenna resonance diagnostics via transversal particle plasmon luminescence. Optics<br>Express, 2011, 19, 3686.                                                                                                | 3.4 | 12        |
| 20 | Operation of Superconducting Nanowire Single-Photon Detectors Embedded in Lumped-Element Resonant Circuits. IEEE Transactions on Applied Superconductivity, 2016, 26, 1-5.                                              | 1.7 | 12        |
| 21 | Wafer-level uniformity of atomic-layer-deposited niobium nitride thin films for quantum devices.<br>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, 052401.                           | 2.1 | 11        |
| 22 | A Novel Analytical Model of Resonance Effects of Log-Periodic Planar Antennas. IEEE Transactions on Antennas and Propagation, 2009, 57, 3482-3488.                                                                      | 5.1 | 10        |
| 23 | Superconducting nanowire single-photon detector with 3D-printed free-form microlenses. Optics Express, 2021, 29, 27708.                                                                                                 | 3.4 | 10        |
| 24 | Fluctuations and dark count rates in superconducting NbN single-photon detectors. Physica Status<br>Solidi C: Current Topics in Solid State Physics, 2005, 2, 1668-1673.                                                | 0.8 | 9         |
| 25 | Critical current density in thin superconducting TaN film structures. Physica C: Superconductivity and Its Applications, 2012, 479, 176-178.                                                                            | 1.2 | 9         |
| 26 | Effect of the Wire Width and Magnetic Field on the Intrinsic Detection Efficiency of Superconducting<br>Nanowire Single-Photon Detectors. IEEE Transactions on Applied Superconductivity, 2013, 23,<br>2200205-2200205. | 1.7 | 9         |
| 27 | Characterization of a Photon-Number Resolving SNSPD Using Poissonian and Sub-Poissonian Light.<br>IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.                                                        | 1.7 | 9         |
| 28 | Superconducting single-photon counting system for optical experiments requiring time-resolution in the picosecond range. Review of Scientific Instruments, 2012, 83, 123103.                                            | 1.3 | 8         |
| 29 | Technology and Performance of THz Hot-Electron Bolometer Mixers. IEEE Transactions on Applied Superconductivity, 2009, 19, 269-273.                                                                                     | 1.7 | 5         |
| 30 | Magnetic field stimulated enhancement of the barrier for vortex penetration in bended bridges of thin TaN films. Physica C: Superconductivity and Its Applications, 2014, 503, 58-61.                                   | 1.2 | 3         |
| 31 | Spectral response of an infrared superconducting quantum detector. , 2004, , .                                                                                                                                          |     | 2         |
| 32 | Magnetic-Field Enhancement of Performance of Superconducting Nanowire Single-Photon Detector.<br>IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.                                                         | 1.7 | 1         |
| 33 | THz spectroscopy of superconducting ultrathin films. , 2014, , .                                                                                                                                                        |     | 0         |
| 34 | Real-time multi-pixel readout of superconducting nanowire single-photon detectors. , 2014, , .                                                                                                                          |     | 0         |
| 35 | Degradation in aluminum resonant optical rod antennas. Materials Research Society Symposia<br>Proceedings, 2015, 1728, 10.                                                                                              | 0.1 | 0         |