Scott D Michaels

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/118832/publications.pdf

Version: 2024-02-01

76326 144013 9,482 58 40 citations h-index papers

g-index 62 62 62 7312 all docs docs citations times ranked citing authors

57

#	Article	IF	CITATIONS
1	Widespread premature transcription termination of Arabidopsis thaliana NLR genes by the spen protein FPA. ELife, 2021, 10, .	6.0	36
2	The BORDER family of negative transcription elongation factors regulates flowering time in Arabidopsis. Current Biology, 2021, 31, 5377-5384.e5.	3.9	8
3	BORDER proteins protect expression of neighboring genes by promoting 3′ Pol II pausing in plants. Nature Communications, 2019, 10, 4359.	12.8	36
4	Molecular basis for the methylation specificity of ATXR5 for histone H3. Nucleic Acids Research, 2017, 45, 6375-6387.	14.5	22
5	Large-scale heterochromatin remodeling linked to overreplication-associated DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 406-411.	7.1	33
6	Identification of Multiple Proteins Coupling Transcriptional Gene Silencing to Genome Stability in Arabidopsis thaliana. PLoS Genetics, 2016, 12, e1006092.	3.5	30
7	Accessing the Inaccessible: The Organization, Transcription, Replication, and Repair of Heterochromatin in Plants. Annual Review of Genetics, 2015, 49, 439-459.	7.6	58
8	Selective Methylation of Histone H3 Variant H3.1 Regulates Heterochromatin Replication. Science, 2014, 343, 1249-1253.	12.6	165
9	Open and Closed: The Roles of Linker Histones in Plants and Animals. Molecular Plant, 2014, 7, 481-491.	8.3	39
10	FLOWERING LOCUS C EXPRESSOR Family Proteins Regulate FLOWERING LOCUS C Expression in Both Winter-Annual and Rapid-Cycling Arabidopsis Â. Plant Physiology, 2013, 163, 243-252.	4.8	19
11	Establishing a Framework for the Ad/Abaxial Regulatory Network of <i>Arabidopsis</i> : Ascertaining Targets of Class III HOMEODOMAIN LEUCINE ZIPPER and KANADI Regulation. Plant Cell, 2013, 25, 3228-3249.	6.6	95
12	Pleiotropy of <i>FRIGIDA</i> enhances the potential for multivariate adaptation. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131043.	2.6	125
13	DNA Methyltransferases Are Required to Induce Heterochromatic Re-Replication in Arabidopsis. PLoS Genetics, 2012, 8, e1002808.	3.5	67
14	Histone methyltransferases regulating rRNA gene dose and dosage control in <i>Arabidopsis</i> Genes and Development, 2012, 26, 945-957.	5.9	81
15	MORC Family ATPases Required for Heterochromatin Condensation and Gene Silencing. Science, 2012, 336, 1448-1451.	12.6	279
16	Contributions of Flowering Time Genes to Sunflower Domestication and Improvement. Genetics, 2011, 187, 271-287.	2.9	82
17	Hypomorphic Alleles Reveal < i>FCA < i>Independent Roles for < i>FY < i>In the Regulation of < i>FLOWERING LOCUS C < i>Â Â Â Â. Plant Physiology, 2011, 155, 1425-1434.	4.8	20
18	Connecting the sun to flowering in sunflower adaptation. Molecular Ecology, 2011, 20, no-no.	3.9	54

#	Article	IF	CITATIONS
19	Dual roles for <i>FY</i> in the regulation of <i>FLC</i> . Plant Signaling and Behavior, 2011, 6, 703-705.	2.4	6
20	Arabidopsis Homologs of Retinoblastoma-Associated Protein 46/48 Associate with a Histone Deacetylase to Act Redundantly in Chromatin Silencing. PLoS Genetics, 2011, 7, e1002366.	3.5	85
21	The Role of Recently Derived FT Paralogs in Sunflower Domestication. Current Biology, 2010, 20, 629-635.	3.9	183
22	Does CONSTANS act as a transcription factor or as a coâ€activator? The answer may be – yes. New Phytologist, 2010, 187, 1-3.	7.3	10
23	Regulation of heterochromatic DNA replication by histone H3 lysine 27 methyltransferases. Nature, 2010, 466, 987-991.	27.8	171
24	The Timing of Flowering. Plant Physiology, 2010, 154, 516-520.	4.8	338
25	The Arabidopsis Paf1c Complex Component CDC73 Participates in the Modification of <i>FLOWERING LOCUS C</i> Chromatin Â. Plant Physiology, 2010, 153, 1074-1084.	4.8	70
26	H3K27me1 is E(z) in animals, but not in plants. Epigenetics, 2009, 4, 366-369.	2.7	20
27	Flowering time regulation produces much fruit. Current Opinion in Plant Biology, 2009, 12, 75-80.	7.1	192
28	ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing. Nature Structural and Molecular Biology, 2009, 16, 763-768.	8.2	278
29	Transcriptional activities of the Pax6 gene eyeless regulate tissue specificity of ectopic eye formation in Drosophila. Developmental Biology, 2009, 334, 492-502.	2.0	25
30	Regulation of <i>CONSTANS</i> and <i>FLOWERING LOCUS T</i> Expression in Response to Changing Light Quality. Plant Physiology, 2008, 148, 269-279.	4.8	87
31	Peering through the pore. Plant Signaling and Behavior, 2008, 3, 62-64.	2.4	3
32	Functional Redundancy and New Roles for Genes of the Autonomous Floral-Promotion Pathway \hat{A} \hat{A} \hat{A} . Plant Physiology, 2008, 147, 682-695.	4.8	62
33	The Nuclear Pore Protein AtTPR Is Required for RNA Homeostasis, Flowering Time, and Auxin Signaling. Plant Physiology, 2007, 144, 1383-1390.	4.8	99
34	FLOWERING LOCUS C-dependent and -independent regulation of the circadian clock by the autonomous and vernalization pathways. BMC Plant Biology, 2006, 6, 10.	3.6	50
35	SUPPRESSOR OF FRI 4 encodes a nuclear-localized protein that is required for delayed flowering in winter-annual Arabidopsis. Development (Cambridge), 2006, 133, 4699-4707.	2.5	77
36	<i>HUA2</i> is required for the expression of floral repressors in <i>Arabidopsis thaliana</i> Plant Journal, 2005, 41, 376-385.	5.7	75

#	Article	IF	CITATIONS
37	FRIGIDA-ESSENTIAL 1 interacts genetically with FRIGIDA FRIGIDA-LIKE 1 to promote the winter-annual habit of Arabidopsis thaliana. Development (Cambridge), 2005, 132, 5471-5478.	2.5	85
38	SUPPRESSOR OF FRIGIDA3 Encodes a Nuclear ACTIN-RELATED PROTEIN6 Required for Floral Repression in Arabidopsis Âwâfž. Plant Cell, 2005, 17, 2647-2660.	6.6	119
39	Establishment of the Vernalization-Responsive, Winter-Annual Habit in Arabidopsis Requires a Putative Histone H3 Methyl Transferase[W]. Plant Cell, 2005, 17, 3301-3310.	6.6	203
40	Integration of Flowering Signals in Winter-Annual Arabidopsis. Plant Physiology, 2005, 137, 149-156.	4.8	281
41	FRIGIDA-related genes are required for the winter-annual habit in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3281-3285.	7.1	171
42	Lesions in the mRNA cap-binding gene ABA HYPERSENSITIVE 1 suppress FRIGIDA-mediated delayed flowering in Arabidopsis. Plant Journal, 2004, 40, 112-119.	5.7	98
43	Genetic interactions between FLM and other flowering-time genes in Arabidopsis thaliana. Plant Molecular Biology, 2003, 52, 915-922.	3.9	103
44	AGL24acts as a promoter of flowering inArabidopsisand is positively regulated by vernalization. Plant Journal, 2003, 33, 867-874.	5.7	298
45	Regulation of Flowering Time by Histone Acetylation in Arabidopsis. Science, 2003, 302, 1751-1754.	12.6	459
46	Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10102-10107.	7.1	316
47	Loss of FLOWERING LOCUS C Activity Eliminates the Late-Flowering Phenotype of FRIGIDA and Autonomous Pathway Mutations but Not Responsiveness to Vernalization. Plant Cell, 2001, 13, 935.	6.6	11
48	High throughput isolation of DNA and RNA in 96-well format using a paint shaker. Plant Molecular Biology Reporter, 2001, 19, 227-233.	1.8	12
49	Identification of a MADS-box gene, FLOWERING LOCUS M, that represses flowering. Plant Journal, 2001, 26, 229-236.	5.7	253
50	Loss of FLOWERING LOCUS C Activity Eliminates the Late-Flowering Phenotype of FRIGIDA and Autonomous Pathway Mutations but Not Responsiveness to Vernalization. Plant Cell, 2001, 13, 935-941.	6.6	521
51	Molecular Analysis of FRIGIDA, a Major Determinant of Natural Variation in Arabidopsis Flowering Time. Science, 2000, 290, 344-347.	12.6	952
52	FLOWERING LOCUS C Encodes a Novel MADS Domain Protein That Acts as a Repressor of Flowering. Plant Cell, 1999, 11, 949.	6.6	21
53	FLOWERING LOCUS C Encodes a Novel MADS Domain Protein That Acts as a Repressor of Flowering. Plant Cell, 1999, 11, 949-956.	6.6	1,803
54	Natural allelic variation identifies new genes in the Arabidopsis circadian system. Plant Journal, 1999, 20, 67-77.	5.7	171

SCOTT D MICHAELS

#	Article	IF	CITATION
55	The gibberellic acid biosynthesis mutantga 1 -3 of Arabidopsis thaliana is responsive to vernalization. , 1999, 25, 194-198.		43
56	A robust method for detecting singleâ€nucleotide changes as polymorphic markers by PCR. Plant Journal, 1998, 14, 381-385.	5.7	179
57	Isolation of LUMINIDEPENDENS: A Gene Involved in the Control of Flowering Time in Arabidopsis. Plant Cell, 1994, 6, 75.	6.6	55
58	The late-flowering phenotype of FRIGIDA and mutations in LUMINIDEPENDENS is suppressed in the Landsberg erecta strain of Arabidopsis. Plant Journal, 1994, 6, 903-909.	5.7	248