Jia Zhang

List of Publications by Year

 in descending orderSource: https:|/exaly.com/author-pdf/11882232/publications.pdf
Version: 2024-02-01

In vivo tracking of unlabelled mesenchymal stromal cells by mannose-weighted chemical exchange
saturation transfer MRI. Nature Biomedical Engineering, 2022, 6, 658-666.

Furinâ€Mediated Selfâ€Assembly of Olsalazine Nanoparticles for Targeted Raman Imaging of Tumors. Angewandte Chemie - International Edition, 2021, 60, 3923-3927.

Furinâ€Mediated Selfâ€Assembly of Olsalazine Nanoparticles for Targeted Raman Imaging of Tumors. Angewandte Chemie, 2021, 133, 3969-3973.

Titelbild: Furinâ€Mediated Selfâ€Assembly of Olsalazine Nanoparticles for Targeted Raman Imaging of Tumors (Angew. Chem. 8/2021). Angewandte Chemie, 2021, 133, 3869-3869.

N â€Aryl Amides as Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Contrast Agents. Chemistry - A European Journal, 2020, 26, 11705-11709.

Development of Zincâ€Specific iCEST MRI as an Imaging Biomarker for Prostate Cancer. Angewandte Chemie - International Edition, 2019, 58, 15512-15517.

Development of Zincâ€Specific iCEST MRI as an Imaging Biomarker for Prostate Cancer. Angewandte
$7 \quad$ Chemie, 2019, 131, 15658-15663.

InnenrÃ¹/4cktitelbild: Carbon Dots as a New Class of Diamagnetic Chemical Exchange Saturation
8 Transfer (diaCEST) MRI Contrast Agents (Angew. Chem. 29/2019). Angewandte Chemie, 2019, 131, 10113-10113.

Detecting acid phosphatase enzymatic activity with phenol as a chemical exchange saturation transfer
magnetic resonance imaging contrast agent (PhenolCEST MRI). Biosensors and Bioelectronics, 2019, 141, 111442.

Carbon Dots as a New Class of Diamagnetic Chemical Exchange Saturation Transfer (diaCEST) MRI Contrast Agents. Angewandte Chemie, 2019, 131, 9976-9980.

Carbon Dots as a New Class of Diamagnetic Chemical Exchange Saturation Transfer (diaCEST) MRI
Contrast Agents. Angewandte Chemie - International Edition, 2019, 58, 9871-9875.

Furin-mediated intracellular self-assembly of olsalazine nanoparticles for enhanced magnetic resonance imaging and tumour therapy. Nature Materials, 2019, 18, 1376-1383.

Phenols as Diamagnetic $\langle\mathrm{i}\rangle \mathrm{T}\langle\mathrm{i}\rangle\langle s u b\rangle 2\langle/$ sub $\rangle \hat{a} € E x$ change Magnetic Resonance Imaging Contrast Agents.
Chemistry - A European Journal, 2018, 24, 1259-1263.

Triazoles as <i>T<|i>₂â€Exchange Magnetic Resonance Imaging Contrast Agents for the Detection of Nitrilase Activity. Chemistry - A European Journal, 2018, 24, 15013-15018.

CEST MRI of sepsisâ€induced acute kidney injury. NMR in Biomedicine, 2018, 31, e3942.
2.8

28

Biotemplated synthesis of three-dimensional porous $\mathrm{MnO} / \mathrm{C}-\mathrm{N}$ nanocomposites from renewable rapeseed pollen: An anode material for lithium-ion batteries. Nano Research, 2017, 10, 1-11.

Enhances T₂MR Imaging of Tumor Apoptosis. Nano Letters, 2016, 16, 2686-2691.

19	Tuning Gold Nanoparticle Aggregation through the Inhibition of Acid Phosphatase Bioactivity: A Plasmonic Sensor for Lightâ€̇lp Visual Detection of Arsenate (As^V). ChemPlusChem, 2016, 81, 1147-1151.	2.8	15
20	Carbon dots: large-scale synthesis, sensing and bioimaging. Materials Today, 2016, 19, 382-393.	14.2	575
21	Intracellular Selfâ€Assembly of Taxol Nanoparticles for Overcoming Multidrug Resistance. Angewandte Chemie - International Edition, 2015, 54, 9700-9704.	13.8	184
22	A microwave-facilitated rapid synthesis of gold nanoclusters with tunable optical properties for sensing ions and fluorescent ink. Chemical Communications, 2015, 51, 10539-10542.	4.1	56
23	Microwave-assisted synthesis of photoluminescent glutathione-capped Au/Ag nanoclusters: A unique sensor-on-a-nanoparticle for metal ions, anions, and small molecules. Nano Research, 2015, 8, 2329-2339.	10.4	75
24	Intracellular Disassembly of Self-Quenched Nanoparticles Turns NIR Fluorescence on for Sensing Furin Activity in Cells and in Tumors. Analytical Chemistry, 2015, 87, 6180-6185.	6.5	45
25	Controlled Intracellular Self-Assembly and Disassembly of ¹⁹F Nanoparticles for MR Imaging of Caspase 3/7 in Zebrafish. ACS Nano, 2015, 9, 761-768.	14.6	108
26	Scaleâ€llp Synthesis of Fragrant Nitrogenâ€Đoped Carbon Dots from Bee Pollens for Bioimaging and Catalysis. Advanced Science, 2015, 2, 1500002.	11.2	164
27	Intracellular Self-Assembly and Disassembly of ¹⁹F Nanoparticles Confer Respective â€œOffâ€• and â€œOnâ€•<sup> 19<\|sup>F NMR/MRI Signals for Legumain Activity Detection in Zebrafish. ACS Nano, 2015, 9, 5117-5124.	14.6	95

A selective sensor for cyanide ion (CNâ^) based on the inner filter effect of metal nanoparticles with photoluminescent carbon dots as the fluorophore. Science Bulletin, 2015, 60, 785-791.
29 Bridging cells of three colors with two bio-orthogonal click reactions. Chemical Science, 2015, 6, 6425-6431. $7.4 \quad 15$The mechanism for the nonlinear optical properties inLa<sub>9<|sub>Na<sub>3<|sub>B<sub>8<|sub>O<sub>27<|sub>,$30 \mathrm{La}<$ sub>2<|sub>Na<sub>3<|sub> $\mathrm{B}\langle$ sub> $3<|$ sub $>\mathrm{O}<$ sub $>9<\mid$ sub $>$ and$1.8 \quad 7$La₂CaB₁₀O₁₉:<i>ab initio</i>studies. Journal of Physics
Condensed Matter, 2015, 27, 485501.Selective Detection of Ferric lons by Blueâ $€^{\text {" }}$ Green Photolum
Formaldehyde Resin Polymer. Small, 2014, 10, 3662-3666.10.02727Fluorescent switch for fast and selective detection of mercury (II) ions in vitro and in living cells and
A simple yet effective chromogenic reagent for the rapid estimation of bromate and hypochlorite in
drinking water. Analyst, The, 2013, 138, 434-437.

38 Detection of Glutathione <i>in Vitro</i> and in Cells by the Controlled Self-Assembly of Nanorings.
Determination of nitrite and glucose in water and human urine with light-up chromogenic response
based on the expeditious oxidation of $3,3 \hat{a} €^{2}, 5,5 \hat{a} €^{2}$-tetramethylbenzidine by peroxynitrous acid. Analyst, The,
$2013,138,2398$.

Colorimetric recognition and sensing of nitrite with unmodified gold nanoparticles based on a	
specific diazo reaction with phenylenediamine. Analyst, The, 2012, 137, 3286.	3.5

41	Sulfite recognition and sensing using Au nanoparticles as colorimetric probe: a judicious combination between anionic binding sites and plasmonic nanoparticles. Analytical Methods, 2012, 4, 1616.	2.7	13
42	Role of Tris on the colorimetric recognition of anions with melamine-modified gold nanoparticle probe and the visual detection of sulfite and hypochlorite. Analyst, The, 2012, 137, 3437.	3.5	31
43	Highly specific colorimetric recognition and sensing of sulfide with glutathione-modified gold nanoparticle probe based on an anion-for-molecule ligand exchange reaction. Analyst, The, 2012, 137, 1556.	3.5	69

44 Colorimetric determination of hypochlorite with unmodified gold nanoparticles through the oxidation of a stabilizer thiol compound. Analyst, The, 2012, 137, 2806.
$3.5 \quad 85$

Colorimetric recognition and sensing of thiocyanate with a gold nanoparticle probe and its
45 application to the determination of thiocyanate in human urine samples. Analytical and Bioanalytical
3.7

25
Chemistry, 2012, 403, 1971-1981.
Colorimetric lodide Recognition and Sensing by Citrate-Stabilized Core/Shell Cu@Au Nanoparticles.
46 Analytical Chemistry, 2011, 83, 3911-3917.
6.5140

A Cu@Au Nanoparticle-Based Colorimetric Competition Assay for the Detection of Sulfide Anion and
$47 \quad \begin{aligned} & \text { A Cu@Au Nanoparticle-Based Colorimetric Competition Assay for the De } \\ & \text { Cysteine. ACS Applied Materials \& Interfaces, 2011, 3, 2928-2931. }\end{aligned}$
$8.0 \quad 81$

Core/Shell Cu@Ag Nanoparticle: A Versatile Platform for Colorimetric Visualization of Inorganic
Anions. ACS Applied Materials \& Interfaces, 2011, 3, 4092-4100.
8.0

41

Specifically colorimetric recognition of calcium, strontium, and barium ions using
49 2-mercaptosuccinic acid-functionalized gold nanoparticles and its use in reliable detection of
3.5

48
calcium ion in water. Analyst, The, 2011, 136, 3865.
A one-dimensional network from the self-assembly of gold nanoparticles by a necklace-like polyelectrolyte template mediated by metallic ion coordination. Nanotechnology, 2009, 20, 295603.
2.6

4

Preparation of Prussian blue@Pt nanoparticles/carbon nanotubes composite material for efficient
7.8

66
determination of H2O2. Sensors and Actuators B: Chemical, 2009, 143, 373-380.

Synthesis and characterization of Prussian blue@platinum nanoparticle hybrids from a mixture

