
Jia Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11882232/publications.pdf Version: 2024-02-01

LIA ZHANC

#	Article	IF	CITATIONS
1	Carbon dots: large-scale synthesis, sensing and bioimaging. Materials Today, 2016, 19, 382-393.	14.2	575
2	Biotemplated synthesis of three-dimensional porous MnO/C-N nanocomposites from renewable rapeseed pollen: An anode material for lithium-ion batteries. Nano Research, 2017, 10, 1-11.	10.4	208
3	Intracellular Selfâ€Assembly of Taxol Nanoparticles for Overcoming Multidrug Resistance. Angewandte Chemie - International Edition, 2015, 54, 9700-9704.	13.8	184
4	Scaleâ€Up Synthesis of Fragrant Nitrogenâ€Doped Carbon Dots from Bee Pollens for Bioimaging and Catalysis. Advanced Science, 2015, 2, 1500002.	11.2	164
5	Furin-mediated intracellular self-assembly of olsalazine nanoparticles for enhanced magnetic resonance imaging and tumour therapy. Nature Materials, 2019, 18, 1376-1383.	27.5	164
6	Casp3/7-Instructed Intracellular Aggregation of Fe ₃ O ₄ Nanoparticles Enhances T ₂ MR Imaging of Tumor Apoptosis. Nano Letters, 2016, 16, 2686-2691.	9.1	162
7	Colorimetric Iodide Recognition and Sensing by Citrate-Stabilized Core/Shell Cu@Au Nanoparticles. Analytical Chemistry, 2011, 83, 3911-3917.	6.5	140
8	Controlled Intracellular Self-Assembly and Disassembly of ¹⁹ F Nanoparticles for MR Imaging of Caspase 3/7 in Zebrafish. ACS Nano, 2015, 9, 761-768.	14.6	108
9	One-Pot Gram-Scale Synthesis of Nitrogen and Sulfur Embedded Organic Dots with Distinctive Fluorescence Behaviors in Free and Aggregated States. Chemistry of Materials, 2016, 28, 4367-4374.	6.7	103
10	Intracellular Self-Assembly and Disassembly of ¹⁹ F Nanoparticles Confer Respective "Off― and "On― ¹⁹ F NMR/MRI Signals for Legumain Activity Detection in Zebrafish. ACS Nano, 2015, 9, 5117-5124.	14.6	95
11	Colorimetric determination of hypochlorite with unmodified gold nanoparticles through the oxidation of a stabilizer thiol compound. Analyst, The, 2012, 137, 2806.	3.5	85
12	A Cu@Au Nanoparticle-Based Colorimetric Competition Assay for the Detection of Sulfide Anion and Cysteine. ACS Applied Materials & amp; Interfaces, 2011, 3, 2928-2931.	8.0	81
13	Highly photoluminescent silicon nanocrystals for rapid, label-free and recyclable detection of mercuric ions. Nanoscale, 2014, 6, 4096.	5.6	78
14	Microwave-assisted synthesis of photoluminescent glutathione-capped Au/Ag nanoclusters: A unique sensor-on-a-nanoparticle for metal ions, anions, and small molecules. Nano Research, 2015, 8, 2329-2339.	10.4	75
15	Highly specific colorimetric recognition and sensing of sulfide with glutathione-modified gold nanoparticle probe based on an anion-for-molecule ligand exchange reaction. Analyst, The, 2012, 137, 1556.	3.5	69
16	Detection of Glutathione <i>in Vitro</i> and in Cells by the Controlled Self-Assembly of Nanorings. Analytical Chemistry, 2013, 85, 1280-1284.	6.5	67
17	Preparation of Prussian blue@Pt nanoparticles/carbon nanotubes composite material for efficient determination of H2O2. Sensors and Actuators B: Chemical, 2009, 143, 373-380.	7.8	66
18	Simple and selective colorimetric detection of hypochlorite based on anti-aggregation of gold nanoparticles. Sensors and Actuators B: Chemical, 2013, 184, 189-195.	7.8	56

Jia Zhang

#	Article	IF	CITATIONS
19	A microwave-facilitated rapid synthesis of gold nanoclusters with tunable optical properties for sensing ions and fluorescent ink. Chemical Communications, 2015, 51, 10539-10542.	4.1	56
20	Use of fluorescent gold nanoclusters for the construction of a NAND logic gate for nitrite. Chemical Communications, 2013, 49, 2691.	4.1	53
21	A simple yet effective chromogenic reagent for the rapid estimation of bromate and hypochlorite in drinking water. Analyst, The, 2013, 138, 434-437.	3.5	50
22	Specifically colorimetric recognition of calcium, strontium, and barium ions using 2-mercaptosuccinic acid-functionalized gold nanoparticles and its use in reliable detection of calcium ion in water. Analyst, The, 2011, 136, 3865.	3.5	48
23	A selective sensor for cyanide ion (CNâ^) based on the inner filter effect of metal nanoparticles with photoluminescent carbon dots as the fluorophore. Science Bulletin, 2015, 60, 785-791.	9.0	48
24	Intracellular Disassembly of Self-Quenched Nanoparticles Turns NIR Fluorescence on for Sensing Furin Activity in Cells and in Tumors. Analytical Chemistry, 2015, 87, 6180-6185.	6.5	45
25	Carbon Dots as a New Class of Diamagnetic Chemical Exchange Saturation Transfer (diaCEST) MRI Contrast Agents. Angewandte Chemie - International Edition, 2019, 58, 9871-9875.	13.8	45
26	Core/Shell Cu@Ag Nanoparticle: A Versatile Platform for Colorimetric Visualization of Inorganic Anions. ACS Applied Materials & amp; Interfaces, 2011, 3, 4092-4100.	8.0	41
27	Colorimetric recognition and sensing of nitrite with unmodified gold nanoparticles based on a specific diazo reaction with phenylenediamine. Analyst, The, 2012, 137, 3286.	3.5	36
28	Oligomeric nanoparticles functionalized with NIR-emitting CdTe/CdS QDs and folate for tumor-targeted imaging. Biomaterials, 2014, 35, 7881-7886.	11.4	35
29	Furinâ€Mediated Selfâ€Assembly of Olsalazine Nanoparticles for Targeted Raman Imaging of Tumors. Angewandte Chemie - International Edition, 2021, 60, 3923-3927.	13.8	32
30	Role of Tris on the colorimetric recognition of anions with melamine-modified gold nanoparticle probe and the visual detection of sulfite and hypochlorite. Analyst, The, 2012, 137, 3437.	3.5	31
31	CEST MRI of sepsisâ€induced acute kidney injury. NMR in Biomedicine, 2018, 31, e3942.	2.8	28
32	Selective Detection of Ferric Ions by Blue–Green Photoluminescent Nitrogenâ€Đoped Phenol Formaldehyde Resin Polymer. Small, 2014, 10, 3662-3666.	10.0	27
33	Determination of nitrite and glucose in water and human urine with light-up chromogenic response based on the expeditious oxidation of 3,3′,5,5′-tetramethylbenzidine by peroxynitrous acid. Analyst, The, 2013, 138, 2398.	3.5	26
34	Colorimetric recognition and sensing of thiocyanate with a gold nanoparticle probe and its application to the determination of thiocyanate in human urine samples. Analytical and Bioanalytical Chemistry, 2012, 403, 1971-1981.	3.7	25
35	Development of Zincâ€Specific iCEST MRI as an Imaging Biomarker for Prostate Cancer. Angewandte Chemie - International Edition, 2019, 58, 15512-15517.	13.8	22
36	In vivo tracking of unlabelled mesenchymal stromal cells by mannose-weighted chemical exchange saturation transfer MRI. Nature Biomedical Engineering, 2022, 6, 658-666.	22.5	18

Jia Zhang

#	Article	IF	CITATIONS
37	Fluorescent switch for fast and selective detection of mercury (II) ions in vitro and in living cells and a simple device for its removal. Talanta, 2014, 125, 204-209.	5.5	16
38	Bridging cells of three colors with two bio-orthogonal click reactions. Chemical Science, 2015, 6, 6425-6431.	7.4	15
39	Tuning Gold Nanoparticle Aggregation through the Inhibition of Acid Phosphatase Bioactivity: A Plasmonic Sensor for Lightâ€Up Visual Detection of Arsenate (As ^V). ChemPlusChem, 2016, 81, 1147-1151.	2.8	15
40	Synthesis and characterization of Prussian blue@platinum nanoparticle hybrids from a mixture solution of platinum nanocatalyst and ferric ferricyanide. Journal of Colloid and Interface Science, 2009, 338, 319-324.	9.4	13
41	Sulfite recognition and sensing using Au nanoparticles as colorimetric probe: a judicious combination between anionic binding sites and plasmonic nanoparticles. Analytical Methods, 2012, 4, 1616.	2.7	13
42	Phenols as Diamagnetic <i>T</i> ₂ â€Exchange Magnetic Resonance Imaging Contrast Agents. Chemistry - A European Journal, 2018, 24, 1259-1263.	3.3	13
43	Detecting acid phosphatase enzymatic activity with phenol as a chemical exchange saturation transfer magnetic resonance imaging contrast agent (PhenolCEST MRI). Biosensors and Bioelectronics, 2019, 141, 111442.	10.1	13
44	The mechanism for the nonlinear optical properties in La ₉ Na ₃ B ₈ O ₂₇ , La ₂ Na ₃ B ₃ O ₉ and La ₂ CaB ₁₀ O ₁₉ : <i>ab initio</i> studies. Journal of Physics Condensed Matter, 2015, 27, 485501.	1.8	7
45	Triazoles as <i>T</i> ₂ â€Exchange Magnetic Resonance Imaging Contrast Agents for the Detection of Nitrilase Activity. Chemistry - A European Journal, 2018, 24, 15013-15018.	3.3	6
46	A one-dimensional network from the self-assembly of gold nanoparticles by a necklace-like polyelectrolyte template mediated by metallic ion coordination. Nanotechnology, 2009, 20, 295603.	2.6	4
47	N â€Aryl Amides as Chemical Exchange Saturation Transfer Magnetic Resonance Imaging Contrast Agents. Chemistry - A European Journal, 2020, 26, 11705-11709.	3.3	4
48	Furinâ€Mediated Selfâ€Assembly of Olsalazine Nanoparticles for Targeted Raman Imaging of Tumors. Angewandte Chemie, 2021, 133, 3969-3973.	2.0	4
49	Titelbild: Furinâ€Mediated Selfâ€Assembly of Olsalazine Nanoparticles for Targeted Raman Imaging of Tumors (Angew. Chem. 8/2021). Angewandte Chemie, 2021, 133, 3869-3869.	2.0	2
50	Development of Zinc‧pecific iCEST MRI as an Imaging Biomarker for Prostate Cancer. Angewandte Chemie, 2019, 131, 15658-15663.	2.0	1
51	Carbon Dots as a New Class of Diamagnetic Chemical Exchange Saturation Transfer (diaCEST) MRI Contrast Agents. Angewandte Chemie, 2019, 131, 9976-9980.	2.0	1
52	Innenrücktitelbild: Carbon Dots as a New Class of Diamagnetic Chemical Exchange Saturation Transfer (diaCEST) MRI Contrast Agents (Angew. Chem. 29/2019). Angewandte Chemie, 2019, 131, 10113-10113.	2.0	0